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Acronyms

ADC	 Analogue-to-Digital Converter

AW	 Adopted White

CAT	 Chromatic Adaptation Transform

CCM	 Camera Characterisation Matrix

CCT	 Correlated Colour Temperature

CFA	 Colour Filter Array

CIE	 International Commission on Illumination

CMF	 Colour-Matching Function

CMYK	 Cyan-Magenta-Yellow-blacK/Key

CRS	 Coordinate Reference System

CS	 Coordinate System

DN	 Digital/Data Number

EV	 Exposure Value

Exif	 Exchangeable image file format

FoV	 Field of View

HVS	 Human Vision/Visual System

JP(E)G	 Joint Photographic Experts Group

OSM	 Output Space Matrix

RGB	 Red-Green-Blue

SPD	 Spectral Power Distribution

TIFF	 Tag(ged) Image File Format
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Abstract

Colour is a powerful communication element in most forms of cultural heritage. This importance of colour notwithstanding, 

the documentation of cultural heritage typically captures the geometrical aspects and seldom the spectral dimensions of an 

artefact. This is partly because the science of colour (called colorimetry) is non-trivial. In addition, capturing accurate colour 

data with digital cameras remains challenging due to the operating principle of standard imaging sensors and the need for a 

stable and well-characterised illumination source. Despite these limitations, the heritage science project INDIGO made it one 

of its central aims to generate colour-accurate photos from graffiti captured with standard digital cameras in varying outdoor 

illumination conditions. This paper first discusses the importance of colour accuracy in graffiti documentation. Afterwards, 

the text details (in a non-mathematical manner) essential colorimetric and camera principles that underlie the generation of 

colour images from raw image sensor data. This in-depth coverage supports clarifying the main hurdles to accurate photo 

colours. Finally, the paper introduces the open-source COOLPI software resulting from this research. We are confident that 

COOLPI will benefit any other heritage documentation project, or any application where digital cameras play a fundamental 

role in acquiring correct colour values.
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1. Introduction

1.1. Colour and Cultural Heritage

Even though colour is not a physical attribute of an object 

but a perceived human physiological sensation, colour 

should be a significant focus point in cultural heritage 

documentation (Molada-Tebar, Marqués-Mateu, & Lerma, 

2019b). As a descriptive attribute, colour is indispensable 

for proper object recognition and cataloguing, but also for 

tasks like damage detection or restoration, to name but a 

few (Boochs et al., 2014). However, colour is so much more; 

it is an effective communication tool that evokes emotions 

and can profoundly affect viewers (Chen et al., 2020; 

Hanada, 2018). That is why colour is crucial in creating 

and studying graffiti. Graffitists often aim to communicate 

social, cultural or political ideas so that they remain 

engraved in the minds of passers-by. In this sense, graffiti 

can be considered a powerful form of visual communication 

free from conventional restrictions (Velikonja, 2020). To 

reach the intended impact of their visual message, graffiti 

creators often rely on a varied, vivid and striking colour 

palette (Feitosa-Santana et al., 2020).

Colour is thus one of the absolute distinguishing features 

of a graffito, often even more than its geometrical aspects. 

Given this significance, one of graffiti project INDIGO’s 

primary research aims is to obtain digital colour values for 

each part of a graffito. These values should be as close to 

reality as possible (i.e. colorimetric) to digitally preserve 

the spectral characteristics of the work and the essence of 

the message that the creators intend to convey. However, 

obtaining colour-accurate data remains a significant 

challenge in heritage documentation (Korytkowski & 

Olejnik-Krugly, 2017). Using colorimetric instruments 

directly on cultural assets might be forbidden or can be cost-

ineffective. For example, it would take very long to acquire 

sufficient samples with a portable spectrophotometer from 

all the differently coloured regions of a painting, like a mural. 

That is why INDIGO relies on digital photographs. Given 

the large number of samples in a digital photo (i.e. each of 

the many million image pixels has at least a red, green and 

blue spectral value), photographs might be considered a 

good and fast approach to obtaining dense colour data 

over a large spatial extent. In addition, photographing is 

a cost-effective, non-contact and physically non-invasive 

method. When many overlapping photos are available, 

it also becomes possible to extract realistic and accurate 

3D models that digitally encode the surface geometry 

(Verhoeven et al., 2022) or support various analytical tasks 

like change detection (Palomar-Vazquez et al., 2017). This 

explains why many traditional heritage documentation 

endeavours and some less-conventional projects on 

contemporary graffiti recording, like INDIGO and others 

(Rodriguez-Navarro et al., 2020), consider photographs the 

primary source to obtain spatial and spectral data about the 

study object(s).

However, whereas the acquisition and processing 

workflows for photo-based 3D surface modelling have 

achieved a certain maturity and consensus, this is not 

true for photo-based colour extraction. It turns out that 

generating colour-accurate photos is still relatively complex, 

as it requires a thorough understanding of colorimetry 

(i.e. the science of colour), a camera’s hardware plus 

processing pipeline, and the illumination source used while 

photographing. In addition, various colorimetric limitations 

related to surface reflectance and digital cameras must be 

considered (Kirchner et al., 2021). In summary: one cannot 

rely on a standard digital photo camera for rigorous and 

objective colour determination without a robust photo 

acquisition and colour management procedure (Molada-

Tebar et al., 2018). The topic of this paper is to provide the 

necessary background for understanding this problem and 

to offer an approach for retrieving colorimetric data from 

digital photos of graffiti.

1.2. Colour Within Project INDIGO

Project INDIGO aims to build the basis to systematically 

document and digitally disseminate almost 13 km of 

uninterrupted graffiti along the Donaukanal (Eng. Danube 

Canal), the central waterway of Vienna, Austria (Verhoeven 

et al., 2022). The project hopes to digitally preserve this 

unique form of volatile cultural heritage and open new 

analytical pathways for such large graffiti-scapes. To that 

end, the photo-based documentation aims to include 

the geometrical (i.e. shape and dimensions), spectral (i.e. 

colour), geographical (i.e. location), temporal (i.e. time of 

creation and lifespan) and contentual (i.e. subject matter 

and meaning) aspects of every graffito. 
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Striving for colour-accurate graffiti photographs was 

prompted since colour is essential in graffiti’s visual 

appearance and study. INDIGO wants to ensure that the 

result of a red spray can is digitally archived as red pixels 

and not as orange ones. Colour-accurate photo records 

not only keep the intended visual impact of the graffiti 

creator but can also open new windows for analysis: what 

are the dominant colours in this graffiti-scape? Can we link 

certain brands of spray cans to specific colour values? Do 

certain creators consistently use the same colour palette? 

In addition, project INDIGO wants to create an online 

platform where everybody can query and visualise graffiti 

records. A part of this platform should provide an extensive 

3D surface model of the entire research zone. This 3D 

model will include overlapping, multi-temporal textures 

(i.e. a texture patch for every new graffito). Enforcing colour 

accuracy for every texture patch should help minimise 

tonal differences across these textures’ seams, thereby 

contributing to a smooth viewing experience.

Finally, all of INDIGO’s data will become freely available at 

the project’s end. Since it is not unimaginable that machine 

learning engineers will use this vast photo collection to 

automate the classification of graffiti by creator or style, 

consistency of the digital records is vital.

1.3. Colour and Graffiti: an Example

Before diving into the realm of light, colour and 

cameras, it is beneficial to start with an example 

to get some basic feeling for the parameters that 

influence the final colour in a photograph. On top of 

several camera-dependent factors, one must keep 

many camera-agnostic variables in check to generate 

Figure 1. Digitally photographing a graffito (upper 

row) generates a RAW image (central row), of which 

the exposure parameters largely influence the pixel 

values. However, even an adequately exposed RAW 

image can result in different colours (lower row) de-

pending upon the RAW development settings used 

inside the camera or by the computer software.
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image pixels with approximately correct colour values. 

Two of those are the exposure values and the development 

settings—used internally by the camera or externally by 

dedicated computer software—to convert the raw sensor 

data into the final pleasing JPG/JPEG or TIFF image. Figure 

1 illustrates both. A graffito (Figure 1 top row) created on a 

wall below Vienna’s Rossauer Bridge is photographed with 

a Nikon Z7ii and a Nikon NIKKOR Z 20mm f/1.8 S lens. The 

ambient incident light levels were measured with a Sekonic 

L-358 FLASH MASTER light meter, yielding the following 

exposure values: ISO 100, f/5.6 and 1/13s. These values 

were dialled into the camera to generate the RAW image in 

the middle of the central row. The lens aperture and sensor 

sensitivity were kept invariant at f/5.6 and ISO 100 for the 

photos on its left and right. However, an underexposure 

of two photographic stops or Exposure Values (EVs) was 

achieved via a shutter speed of 1/50 s, while a shutter speed 

of 1/3 s yielded the 2 EVs overexposed photo on the right. 

Because the values of the photographs are unprocessed 

or raw (thus constituting a RAW image), two things can be 

noticed:

•	 The image looks very green since a camera’s imaging 

sensor is most responsive in the green spectrum. This 

apparent colour imbalance must be considered when 

rendering the final JPG or TIFF file.

•	 The photos look very dark, even the correctly exposed 

and overexposed ones. The pixel values of a RAW image 

are ideally varying in a perfectly linear fashion with the 

incoming light. Like the human visual system, more collected 

light means higher values. However, computer monitors 

apply a non-linear tonal transformation when displaying 

images. This transformation is ‘undone’ when rendering the 

final JPG or TIFF file from the RAW image. Since they do 

not consider this non-linear transformation by the monitor, 

RAW camera images look very dark.

To understand how these exposures would yield different 

colours in the final photo, the lowest portion of the RAW 

images depicts a processed version into a neutrally 

rendered JPG image. However, the last parts of the entire 

rendering process also largely influence the resulting 

colours (Karaimer & Brown, 2019). The lowest row of 

Figure 1 depicts three different renderings of the properly 

exposed RAW image. Most cameras and RAW conversion 

software feature rendering settings like “flat”, “standard”, 

and “vibrant”. Each setting applies one or more algorithms 

to ‘lift’ the shadows or ‘suppress’ the highlights, to sharpen 

details and boost or restrain colour vibrancy. All these sub-

settings—which solely aim at turning the raw, unprocessed 

data into a pleasing photo with a specific style—influence 

the finally rendered pixel values, thus increasing the 

potential of ending up with inaccurate colours (Ramanath 

et al., 2005).

In addition, RAW-to-JPG operations are complex, diverse, 

typically manufacturer-specific and thus proprietary 

(Chakrabarti et al., 2009), making it hard to understand all 

rendering operations fully. If they are executed within the 

camera (i.e. when the camera is set to deliver a pleasing, 

fully-rendered output image), the process can usually 

only be controlled via a few basic settings like sharpness, 

vibrancy and shadow recovery. These, plus many other 

factors, prevent digital photos from being accurate 

colorimetric records. If rigorous colour determination 

based on image pixels is the aim, a colour-aware procedure 

with control over each parameter is essential (in addition 

to auxiliary data). Our paper presents the workflow and 

software to achieve this within project INDIGO. Since such 

a description necessitates much particular terminology, we 

decided to let clarity rule over textual conciseness. This 

makes it possible to provide the reader with a rather in-

depth but non-mathematical overview of all critical colour 

imaging principles and their supporting colorimetric ideas.

The rest of the article is structured as follows. First, 

we introduce the basics of creating, measuring and 

communicating colour (Section 2). Second, the basics 

of creating pixels with a digital imaging sensor are 

tackled (Section 3). Based on these colorimetry and 

camera principles, Sections 4 and 5 explain why standard 

photographs are not colorimetric and which data acquisition 

and processing steps INDIGO has put in place—in the form 

of a free and open-source software package COOLPI—

to largely alleviate that shortcoming. Finally, Section 6 

provides some workflow reflections and covers the imaging 

situations COOLPI will not be able to handle. All our work 

is guided by colorimetric standards, particularly those 

published by the Commission Internationale de l’Éclairage 

(CIE; Eng. International Commission on Illumination). 
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Although written in British English, this text uses the 

non-British variant “colorimetric” because “colour” and 

“colorimetric” are official CIE terminology (CIE, 2018).

 

2. Understanding Colour

Photographing an object works because the light created 

by at least one source reaches that object; the object then 

reflects a part of that light towards the camera. However, 

many hard- and software parts are needed inside the 

camera to turn the captured signal into a photo that closely 

resembles the object we witnessed with our eyes. This entire 

photo acquisition pipeline leverages many colorimetric 

concepts. The following five sub-sections—based mainly 

on Verhoeven (2016)—provide a basic introduction to the 

concepts essential to understanding the proposed image 

processing workflow.

2.1. Light

Electricity and magnetism are intimately related. Moving a 

magnet around an electric wire creates an electric current. 

Still, a moving electric field will also produce a magnetic 

field. Since both fields create each other, they oscillate 

together and create a so-called electromagnetic wave 

(see Figure 2 on the left). Being a wave-like phenomenon, 

electromagnetic radiation can be distinguished by the length 

of its waves, called the wavelength (λ). Electromagnetic 

radiation with a wavelength between 400 nm (400 x 10-9 

m) to 700 nm (700 x 10-9 m) is called visible light or simply 

light (although colorimetric applications often use 380 

nm as cut-on and 780 nm as cut-off wavelength). Light is 

thus only a very narrow spectral band out of all possible 

electromagnetic radiation (see Figure 2 on the right 

and Figure 3) and the only wavelengths to which human 

eyes respond with a visual sensation. To both sides of 

the visible band resides radiation that does not produce 

a visual sensation: gamma rays, X-rays and ultraviolet 

radiation with shorter-than-visible wavelengths, while the 

long-wavelength region encompasses infrared radiation, 

microwaves and radiowaves (Figure 3). The part of the 

electromagnetic spectrum that includes the complete 

ultraviolet to infrared bandwidth, comprising radiation 

with wavelengths between 10 nm (0.01 µm) to 1 mm (1000 

µm), is called the optical electromagnetic spectrum (Ohno, 

2010) (see the classification in Figure 2).

Figure 2. On the left an electromagnetic wave consisting of electric and magnetic oscillating fields. The oscillating electric field 

vectors are indicated in red, while the blue lines represent the magnetic field vectors. On the right are the divisions of optical 

electromagnetic radiation.
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In the visible wavelength range, each wavelength of light 

correlates with a sensory impression of a particular colour 

(or, more technically correct, ‘hue’). Even though colour is 

thus not a physical property of electromagnetic radiation, 

the light spectrum may be roughly divided according to 

it, as indicated in Figure 3. The latter shows that the light 

spectrum contains all hues visible in a rainbow: varying 

from red on the long-wavelength side over orange, yellow, 

green and blue to violet on the short-wavelength side 

(sometimes the hue indigo is defined between blue and 

violet). For the sake of simplicity, the visible spectrum is 

usually considered to consist of only three bands: Blue (400 

nm – 500 nm), Green (500 nm – 600 nm) and Red (600 nm 

– 700 nm). Although a coarse approximation, many image-

related devices, such as digital cameras and monitors, base 

their physical working principles on this subdivision.

In addition to the wave properties mentioned above, 

electromagnetic radiant energy exhibits particle-like 

behaviour. These indivisible particles are called photons, 

discrete energy packets with energy levels that differ 

according to the wavelength. Due to this quantisation, a 

visible photon with a wavelength of 650 nm will always have 

1.9 eV of energy, while photons with quantum energies of 

3.6 eV characterise 345 nm ultraviolet radiation. These 

numbers show that shorter wavelengths have higher 

radiative energies (see Figure 3). This also explains why 

highly energetic ultraviolet radiation causes sunburns.

None of the wave-like and particle-like descriptions 

of electromagnetic radiation is complete by itself. 

Still, each offers a valid description of some aspects of 

electromagnetic radiation’s behaviour. However, one could 

as well forget about this wave-particle duality if in need of 

absolute physical accuracy. Essentially, there are no waves 

and particles, just quantised fields with discrete excitations. 

That is also why quantum field theory is the theoretical 

framework behind the standard model of particle physics 

(Mandl & Shaw, 2010). However, to understand how 

light contributes to the creation of colour, this naïve 

interpretation of light as ‘waves’ and a stream of ‘particles’ 

is satisfying enough.

Figure 3. The complete electromagnetic spectrum with the spectral subdivisions of the visible waveband. The spectral hue 

names are after Hunt (2004).
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2.2. Creating Colour

Human colour perception results from the visible 

electromagnetic radiation received by the eye’s 

photoreceptors and how the brain subsequently interprets 

these signals (B. B. Lee, 2004). In brief, colour ‘happens’ 

inside the human head, and this combined eye-brain 

processing is known as the Human Vision/Visual System 

(HVS). Although the general principles of the HVS are 

known and basically identical amongst all humans, smaller 

aspects can differ. For instance, some people might be more 

or less sensitive to Red light. This leads to varying forms of 

colour deficiencies in male and female populations but also 

explains why two human observers might perceive colour in 

more or less different ways. In addition, the emotions that 

colour evokes are subjective, dependent on the observer’s 

experience and culturally determined (Jonauskaite et al., 

2019).

These differences notwithstanding, there is always an 

interaction between three elements required to generate 

or see colour: a light source, an object and an observer. At 

the origin of this imaging chain lies the interaction of light 

with the scene or object. This interaction determines which 

portion and quantity of light the HVS (or digital imaging 

sensor) will detect and process. Figure 4 details this: visible 

electromagnetic radiation falls onto an object; depending 

on its physical and chemical properties, the object reflects, 

absorbs and transmits a fraction of all the incident light. 

Finally, a digital camera or a human observer picks up the 

diffusely reflected portion. This signal emanating from the 

object is called the spectral stimulus signal, the spectral 

stimulus or simply stimulus. The stimulus is thus always 

a function of the light source and the object’s spectral 

reflectance. If one of those two components is altered, 

so will the stimulus. For example, healthy grass is green 

because it mainly reflects incident solar light between 500 

nm and 600 nm, a range perceived by the HVS as green. 

If grass gets solely illuminated by a light source devoid of 

wavelengths between 500 nm and 600 nm (e.g. a blue disco 

light), this part of the spectrum cannot be reflected, making 

it impossible for the HVS or a digital camera to render grass 

green.

Figure 4. Three elements are needed to perceive colour: a light source, an object and an observer (HVS).

Colorimetry, Molada-Tebar & Verhoeven

The spectral stimulus which arrives at a digital camera 

gets integrated over millions of small photodetectors, all 

of which feature one of three spectral response curves 

(approximately situated in the Red, Green and Blue parts of 

the spectrum—see Figure 5A). A human observer integrates 

the stimulus over the five to six million cones in the retina at 

the back of the eye (Wandell, 1995). Similar to the camera’s 

imaging sensor, the centre of the retina is densely packed 

with three cone variants with a specific response to visible 

wavelengths: cones sensitive to Short, Middle and Long 

wavelengths (S, M and L), named according to the part 

of the visible spectrum to which they are most sensitive 

(Stockman & Sharpe, 2000). Figure 5B depicts the linear 

normalised spectral sensitivity curves of the S-, M- and 

L-cones. These curves are known as the cone fundamentals.

Since a digital photo camera and the HVS sample the 

incoming signal in three different spectral regions, they are 

so-called trichromatic devices. Their respective spectral 

response/responsivity curves (also known as their spectral 

sensitivities) determine the likelihood that a photon of a 

specific wavelength will contribute to the imaging process 
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(Cornsweet, 1970). They can thus be interpreted as 

probability functions. In short: when photons of a stimulus 

arrive at the eye or digital camera, they get weighted by 

the three sensitivity functions. Each of the three resulting 

photon collections is added up to produce a signal, and the 

three signals are proportional to the area under the three 

curves.

The raw trichromatic signals generated by the camera are 

then processed inside or outside the camera (see Sections 3 

and 4) to yield Red-Green-Blue (RGB) colour values that—

when combined—ideally depict the colour as perceived in 

the real world by a human observer. Inside the HVS, the 

brain’s post-retinal structures process the trichromatic 

retinal signals to yield a colour perception. Although 

both processing chains are vastly different, the relative 

proportion of the photons absorbed by the three cones/

spectral response curves determines which colour gets 

perceived in both cases. For completeness, it is interesting 

to know that the brain encodes the retinal signals into 

three opponent signals: two chrominance signals and one 

achromatic channel representing luminance information 

(Valberg, 2005). Later in this paper, we will see why splitting 

colour into its chromaticity and luminance components is 

helpful.

2.3. Standard Observers and Colour-Matching Functions

Because it was impossible in the early 20th century to 

directly measure the response functions of the S-, M- and 

L-cones inside the human eye, visual colour-matching 

Figure 5. The normalised spectral response curves of a Nikon D200 (A) and the cones in the retina of a human eye (B). The 

latter curves are also called cone fundamentals, and the graph uses the 10° data from Stockman and Sharpe (2000).

Colorimetry, Molada-Tebar & Verhoeven
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experiments were conducted to derive a so-called CIE 

standard observer (H.-C. Lee, 2005). This CIE standard 

observer is a mathematical representation of the average 

colour vision of humans in the 380 nm to 780 nm range. 

Characterised by three curves called the Colour-Matching 

Functions or CMFs, the standard observer is a central pillar 

of present-day digital imaging and colour science.

As a matter of fact, two CIE Standard Observers exist: 

one initially determined in 1931 and another defined in 

1964. Both were established with the help of healthy and 

young human participants asked to look at a white screen 

through a small aperture. Different test colours from the 

visible spectrum were projected onto that screen, thereby 

filling half of the screen (see Figure 6). At the same time, 

these participants could work with one Red, Green and 

Blue monochromatic light (i.e. a light source producing 

one wavelength and technically called a primary). The 

participants adjusted the amounts of these three lights/

primaries on the other half of the screen until the additive 

mix of these three lights matched the projected test colour 

(see Figure 6).

This colour-matching process was repeated until most 

colours across the visible spectrum were covered. For some 

test colours, no match could be obtained by additively 

mixing the three lights. The only way to make a match was to 

remove one of the lights and add it to the test colour. When 

this happened, the primary was given a negative value. In 

1931, the CIE published the three curves that resulted 

from averaging two such colour-matching experiments: one 

by David Wright (1928-29) and one by John Guild (1931). 

These curves became known as the CIE 1931 2° standard 

observer. The “2°” in the name comes from the fact that the 

participants had to look through a hole that allowed them 

to have a 2° Field of View (FoV) during the colour-matching 

experiment (see Figure 6). This 2° FoV was used because it 

was believed all cones were located in a small area of the 

retina called the fovea. Scientists later found out that the 

cones covered a larger area, spreading beyond the fovea.

That is why the CIE used the colour-matching experiments 

by Stiles, Burch and Speranskaya (Speranskaya, 1959; Stiles 

& Burch, 1959) to propose a second, 10° standard observer 

in 1964. Besides a larger FoV and more observers (49 versus 

the initial 17), the wavelengths of the Red, Green and Blue 

primaries also differed for these new tests: [645.16, 526.32, 

444.44] nm versus [700.0, 546.1, 435.8] nm for the first 

experiments in the 1920s. So today, two standard observers 

exist: the CIE 1931 2 degrees observer and the CIE 1964 10 

degrees observer (Figure 7A). Their CMFs are technically 

denoted CIE 1931 2° RGB CMFs  and CIE 

1964 10° RGB CMFs , respectively 

(Ohno, 2000). Slight adaptations to these CMFs have been 

proposed in the past two decades (CIE, 2006, 2015), but 

many engineers and scientists still favour the original ones.

Figure 7. A) The CIE 1964 10° RGB CMFs; the tristimulus values for an orange hue of 600 nm are indicated. B) The CIE 1931 

2° XYZ CMFs (modified by Judd (1951)) and CIE 1964 10° XYZ CMFs with primaries X, Y and Z. All datasets from Colour and 

Vision Research Laboratory (2021).
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Both sets of RGB CMFs allow determining the relative 

quantity of the corresponding standardised primaries (i.e. 

the specific Red, Green, and Blue lights) needed to match 

a monochromatic test light of a particular wavelength. 

As an example, Figure 7 displays the 10° RGB CMFs and 

indicates that a combination of 3.17 parts of a 645.16 nm 

light, 0.26 parts of a 526.32 nm light and 0 parts of a 444.44 

nm light source will produce a perfect match for the colour 

sensation of a 600 nm monochromatic test light. As such, 

most perceivable colours can be described by a known 

set of RGB primaries and three numbers corresponding to 

the amount of each primary needed to create that specific 

colour. These numbers are called the tristimulus values 

for that colour, and colour televisions, computer monitors, 

scanners and digital photo cameras exploit this trichromatic 

additive colour-mixing phenomenon.

However, Figure 7 also shows these RGB CMFs to have 

negative lobes. This results from the previously mentioned 

negative primary. The observer of the colour-matching 

experiment had to remove one primary from the mixture 

and add it to the monochromatic test light to achieve a 

match with the remaining two primaries (Wandell, 1995). 

Even though this behaviour is due to the similar spectral 

responses of the L- and M-cones (see Figure 5B), these 

CMFs are inconvenient for colorimetric applications 

because they create a physically non-achievable solution 

for RGB devices. For example, a digital camera should be 

negatively sensitive to particular wavelengths, meaning it 

should emit them. 

The CIE performed a linear mathematical transformation of 

the initially calculated RGB CMFs to avoid negative values 

at all wavelengths. This yielded a new set of imaginary 

XYZ primaries and corresponding XYZ CMFs: CIE 1931 2° 

XYZ CMFs  and CIE 1964 10° XYZ CMFs

 
, for a 2° and a 10° FoV (CIE, 2018). Figure 

7B shows that both CMFs are slightly different, as the CIE 

1964 10° XYZ CMFs also involve regions of the retina that 

are less densely packed with cones (Malacara, 2011). Note 

that the X, Y, and Z primaries are physically unattainable; 

they are purely mathematical constructs made up from the 

real CIE R, G, and B primaries using a matrix transformation. 

Even though no single natural person is probably exactly 

like any of the CIE standard observers (Nimeroff et al., 

1961), and notwithstanding the drawback that the CIE 

XYZ CMFs use imaginary primaries because no physical 

matching lights can obtain these functions (Hung, 2006), 

these CMFs are still essential in all aspects of colorimetry 

and a vital element for understanding colour perception.

Finally, it is necessary to understand that the 10° cone 

fundamentals depicted in Figure 5B are an exact linear 

transform of the 10° XYZ CMFs (which also counts for the 

2° curves). Via multiplication with a 3x3 matrix containing 

nine elements, one can quickly get one set of curves from 

the other and vice versa (Berns, 2019). The CMFs and cone 

fundamentals are thus duals of one another (Horn, 1984). 

The following section will explore how these CIE XYZ CMFs 

allow calculating the fundamental XYZ tristimulus values 

for any perceivable colour.

2.4. Expressing Colour: Colour Models and Spaces

In the digital world, colour is represented using global 

colour models and more specific colour spaces. Colour is 

often mathematically defined as a three-dimensional (3D) 

property. However, a point in a 3D space can be determined 

using many different Coordinate Systems (CSs). In 

cartography, a CS is determined by its dimensionality (i.e. 

the number of coordinate axes) and the attributes of these 

axes: their name, abbreviation, units, direction and order 

(Iliffe & Lott, 2008). As an example: a 3D Cartesian XYZ 

system using the meter. If any of these attributes changes, 

the CS changes.

The same goes more or less for colour (Verhoeven, 2016). 

Many CSs for colour exist, typically built upon three or four 

coordinate axes with a specific name, direction and order. 

Two well-known examples are the RGB and CYMK colour 

models. Whereas the RGB colour model is used in digital 

cameras and monitors to describe colour values with an 

RGB triplet, a 4D system like CMYK is used in printing to 

describe colour via specified amounts of a Cyan, Magenta, 

Yellow and blacK/Key primary. However, a specific RGB 

triplet such as R:130 – G:110 – B:255 does not define a 

particular colour but only indicates the ratio of the three 

components used. Although 255 is the maximum value for 

each R, G and B channel in an 8-bit image, a colour model 

does not specify how ‘vibrantly blue’ this maximum should 
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be. In other words: a colour model is a mathematical system 

without describing how these values should be interpreted 

in terms of real-world, quantified colours. Colour models 

such as RGB, CMYK, HSV (Hue, Saturation, Value), and 

HSL (Hue, Saturation, Lightness) are, therefore, said to be 

relative.

To accomplish an unambiguous description of colours, one 

needs colour spaces. And again, cartography functions as a 

handy comparison. Cartographers use the term Coordinate 

Reference System (CRS) when a CS is fixed to a specific 

object. For example, a 3D Cartesian XYZ coordinate system 

with units in meters related to the Earth by fixing the CS’ 

scale, orientation and the position of its origin. Similarly, 

the CIE XYZ colour space is associated with the operating 

principles of the HVS, and all other colour spaces are related 

to the XYZ colour space. Once coordinates are given in 

any colour space, one knows unambiguously which colour 

these coordinates represent. To map from relative RGB 

values to absolute CIE XYZ values, RGB colour model-based 

colour spaces are defined by three primaries, a specific CIE 

illuminant and a gamma value.

Defining a specific primary for each axis is similar to 

choosing the three monochromatic lights in the colour-

matching experiments. From a conceptual point of view, 

establishing a primary determines the greenest green, the 

bluest blue and the reddest red, represented by the highest 

value on the R, G, and B axes. Since these primaries can be 

freely defined, each colour model has almost unlimited 

colour spaces. In other words: a particular colour space is 

just one possible, absolutely defined instance of the more 

general colour model.

The best-known RGB colour spaces for digital photographs 

are sRGB, Adobe RGB (1998) and ProPhoto RGB (also 

known as ROMM RGB), all with three unique primaries. 

Figure 8 provides the data for these three colour spaces 

and compares all three in the CIE xy chromaticity diagram. 

The chromaticity coordinates (x, y) are defined by:

	 , X Yx y
X Y Z X Y Z

= =
+ + + +

	 (1)

so that a colour’s chromaticity can be described irrespective 

of its luminance (Hunt, 2004). The three points that form 

a colour space triangle correspond to the chromaticity 

coordinates of that colour space’s primaries (Figure 8 also 

gives these values). The area in the triangle is known as the 

colour gamut and encompasses all the colour values one 

can create by mixing those three primaries. From Figure 8, 

one can infer that the sRGB space has a relatively limited 

gamut (which corresponds to those of most monitors). 

In contrast, Adobe RGB (1998) and ProPhoto RGB have 

much wider gamuts, even though all three are based on 

the RGB colour model. In other words, the ProPhoto RGB 

colour space can represent more colours than the Adobe 

RGB (1998) space, which can store a broader range of 

colours than the sRGB colour space. Since the horseshoe-

shaped chromaticity diagram represents all chromaticities 

visible to a standard human observer, the gamut of human 

vision is clearly not a triangle. The outer curved diagram 

boundary is known as the spectral (or monochromatic) 

locus, because monochromatic lights can generate these 

chromaticities. The diagram includes the wavelengths of 

those monochromatic lights for completeness.

Combining three primaries with a particular CIE illuminant 

and gamma value (concepts detailed in Sections 2.5 and 

4.6, respectively) thus effectively maps RGB values to the 

CIE XYZ reference colour space. As mentioned, X, Y, and Z 

primaries are purely mathematical entities, but they allow 

us to uniquely create and describe all possible colours that 

an average human perceives. The values mentioned above 

(R:130 – G:110 – B:255) expressed in the sRGB colour 

space correspond to X: 32.8 – Y: 23.1 – Z: 97.3, describing a 

purple-ish tone (see Figure 8 on the right). A more blue-ish 

tone results when the same RGB values are expressed in the 

ProPhoto colour space. As one would expect, its objective 

description in CIE 1931 2° XZY values changes to X: 29.8 

– Y: 24.2 – Z:82.5. However, it is the reverse conversion 

which makes the XYZ colour space so powerful: given a 

colour expressed in terms of CIE XYZ tristimulus values, its 

corresponding value in any possible colour space like sRGB 

or Adobe RGB (1998) can be computed. And because the 

CIE XYZ colour space is device independent, it functions 

as connection space between input and output devices. In 

other words, devices like scanners and digital cameras have 
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to find a way to map their device-specific RGB values to 

corresponding XYZ values. As we will see in Section 5, this 

is one of the most critical steps in producing adequately 

accurate colour values with a digital camera.

However, not just the values generated by a digital camera 

must, at a certain point, be expressed in XYZ coordinates. 

The XYZ colour space is omnipresent in colorimetry, and 

everything—from illumination sources to stimuli—can be 

described in terms of XYZ coordinates. This is the topic of 

the following two sections.

2.5. Characterising Illumination

Any light source can be expressed by its Spectral Power 

Distribution (SPD): a series of numbers quantifying the 

amount of each visible wavelength (between 400 nm and 

700 nm) included in the light source. Blue disco light emits 

mainly wavelengths between 400 nm and 500 nm and has 

almost no output from 500 nm to 700 nm. On the other 

hand, a camera flashlight contains all visible wavelengths in 

varying proportions. Plotting these numbers yields a graph 

like the ones in Figure 9A. Both SPDs were measured by the 

INDIGO staff with a Sekonic C-7000 SPECTROMASTER 

portable handheld spectrometer. The graph shows 

two different illuminations of a graffito just before 

photographing it. These curves always combine direct solar 

radiation and diffuse skylight. The former might be zero on 

very cloudy days or when a graffito is in the shadow.

The SPD of any light source can thus be measured with 

a spectrometer. However, in colorimetric applications, 

one usually does not work with just any light source but 

with so-called CIE standard illuminants: quantified and 

standardised illumination sources. The CIE has described 

several standard illuminants (International Organization 

for Standardization, 2022) based on physically obtainable 
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Figure 8. On the left, the primaries and bounds of three RGB colour spaces are drawn on top of the xy chromaticity horseshoe 

diagram that represents the limits of human colour vision. The top right inset provides all colour space-specific data. The 

bottom right illustrates how identical RGB values (130, 110, 255) result in different colours (and CIE 1931 XYZ or 1931 xy 

values) when expressed in the sRGB or ProPhotoRGB colour space. Both colours are indicated in the chromaticity diagram.
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light sources or their statistical representations (see Figure 

9B). Of those, the CIE D65 is the most widespread. The “D” 

part of the name indicates that D65 is a Daylight illuminant, 

part of a family that is representative of the various phases 

of daylight (Judd et al., 1964). Its SPD (see Figure 9B) aims 

to roughly correspond to the average western European 

midday light (comprising both direct sunlight and diffuse 

skylight). The “65” part refers to this illuminant’s correlated 

colour temperature of approximately 6500 degrees kelvin 

(CIE, 2018).

Summarising metrics like the Correlated Colour 

Temperature (CCT) exist since it is not always possible nor 

practical to consider the illumination’s entire SPD. The CCT 

characterises the illumination’s dominant colour with a 

temperature reading on the kelvin scale. The kelvin value 

(symbolised by K) refers to the temperature at which a 

theoretical object (called a blackbody) must be heated so 

that its SPD generates the same colour experience as the 

SPD of the illuminant. A blackbody is a theoretical object 

that absorbs all incident electromagnetic radiation; it is 

black. Any electromagnetic radiation originating from a 

blackbody is emitted solely as a function of its temperature, 

as described by Planck’s law (Walker, 2004). Figure 10 

depicts the temperature-dependent output of a blackbody, 

and although iron is not a blackbody, it pays off to visualise 

heated iron to understand the curves in Figure 10 better. 

When heated to 700 K (i.e. 700 K – 273.15 = 426.85 

degrees Celsius or 427 °C), the piece of iron is characterised 

by a deep red glow. The iron shall radiate brighter, reddish-

orange light when raising the temperature to about 1000 K 

(727 °C). Increasing the temperature to its boiling point at 

3134 K (2861 °C) yields a brilliant orange-yellowish light. In 

other words: the SPD of the emitted light is only a function 

of the iron’s absolute surface temperature, hence the term 

Colour Temperature (CT). Since a blackbody is an idealised 

object and illumination sources are not ideal blackbody 

radiators, the entire SPD of these sources cannot be 

described solely as a function of temperature. However, 

their colour or, more accurately, their chromaticity can. This 

gave birth to Correlated CT or CCT: the kelvin temperature 

at which a blackbody SPD yields the same chromaticity 

experience as the illumination source under consideration 

(Borbély et al., 2001).

Being a one-dimensional metric, CCT is a convenient 

but limited way to characterise and summarise many 

illumination sources. Although an in-depth discussion 

of its (dis)advantages is beyond the scope of this paper, 

one of the problems with CCT is that different SPDs can 
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Figure 9. Inset A depicts two spectral power distributions of the outdoor illumination just before photographing a graffito. 

Inset B represents the SPDs of the CIE D50, D65, A and E standard illuminants. The SPDs of the latter four come from the 

ISO/CIE 11664-2:2022 standard (International Organization for Standardization, 2022).
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Figure 10. The blackbody radiation 

output for different kelvin tempera-

tures (K). The lower graph is a semi-

log plot with the spectral radiance 

displayed on a logarithmic scale to 

better visualise the radiation emis-

sion at lower temperatures. In this 

way, it is possible to show that a 

blackbody with the temperature of an 

average human body at 37 °C (or 310 

K) does not emit any visible light. Only 

around 700 K (or 427 °C) gets visible 

red light emitted. Dashed lines in the 

lower, semi-log plot indicate black-

body radiation at temperatures not 

depicted in the upper plot. Blackbody 

radiance curves of a specific tempera-

ture share the same colour in both 

plots. The inset provides the CCT val-

ues of common illumination sources.

result in an identical CCT value. Figure 11 illustrates this. 

The left side displays three real-world daylight SPDs and 

their CCTs. These SPDs—measured with a Sekonic C-7000 

SPECTROMASTER spectrometer—are normalised to their 

maximum value to ease comparison. Although the Sun is 

close to an ideal blackbody, these real-world daylight SPDs 

are pretty different from the SPDs of a blackbody heated at 

those temperatures (Figure 11, right side), mainly because 

solar illumination is altered by various absorptions via 

atmospheric gasses.

Figure 11. The SPDs and CCTs of three outdoor illumination scenarios are displayed on the left, while the right side depicts 

the blackbody spectra at the same kelvin temperatures. The tables below both plots provide the CIE 1931 2° XYZ and xy 

coordinates of each SPD. 
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Instead of CCT, illumination SPDs are also characterised 

by their XYZ values (see Figure 11). To obtain these XYZ 

values, the illumination’s SPD is multiplied by the CMFs of 

a CIE standard observer. Then, all the visible wavelength 

values are summed for each of the three CMFs to obtain 

the CIE XYZ tristimulus values for that incoming stimulus  

(this multiplication and summation combination is 

known as integration; see also Figure 13, but without 

the reflectance.). The resulting XYZ coordinates are said 

to represent the white point of the SPD. In other words, 

expressing the colour of an illumination source as an XYZ 

coordinate triplet tells us how much of the imaginary X, Y 

and Z primary is needed to produce that colour.

Despite being purely mathematical, the CIE XYZ colour 

space features a few unique properties. For instance, the 

Y value represents the luminance data generated by the 

HVS, which is approximately the physical counterpart of 

the perceptual quantity brightness (CIE, 2018). That is why 

the white point’s XYZ coordinates are usually divided by Y, 

so Y always equals 1. Because the Y value represents the 

luminance of a colour, the resulting X and Z coordinates 

characterise the SPD’s white point without considering 

its luminance. Having two coordinates (X, Z) instead of 

one (like CCT) offers advantages. For instance: CCT as a 

principle relies on glowing hot objects. However, there is 

nothing that glows green or magenta. So if an SPD of a given 

illumination source would be perceived as a bit greener 

than the blackbody radiation at that temperature, this can 

be expressed by the XZ white point coordinates but not by 

the CCT. Table 1 provides some white point coordinates 

of standard CIE illuminants. Via equation (1), these white 

points can also be expressed as chromaticity coordinates 

(x, y).

Finally, it is essential to know that the 2° and 10° XYZ CMFs 

(see Figure 7B) have arbitrary units because they were 

normalised to yield identical XYZ values for a spectrally 

flat stimulus (i.e. an equi-energy stimulus). That is why 

the equi-energy CIE illuminant E has [1, 1, 1] as XYZ white 

point (see Table 1). Illuminant E is, therefore, called the 

reference white of the CIE XYZ colour space. It was already 

mentioned above and indicated in Figure 8 that any RGB 

colour space has a reference or native white (like D65 for 

sRGB). In each case, the SPD of this illumination results in 

a maximum identical value for each axis (i.e. [1, 1, 1]), thus 

representing white. For example, the stimulus in Figure 19C 

equals the reference white SPD for a Nikon D700.

2.6. Measuring Colour

Colorimetry, or the science of colour measurement, intends 

to express colours quantitively based on colorimetric 

standards (Hunt & Pointer, 2011). Since 1931, the CIE has 

provided several systems for that purpose, like the CIE 

XYZ colour space mentioned before. Since the text already 

explained the concepts of SPD, standard illuminant and 

their characterisation via CIE XYZ coordinates, it becomes 

now straightforward to explain colour measurement.

To express any object’s colour as XYZ coordinate triplet, 

one needs three elements again (see Figure 12): the 

light source or illuminant, the object or sample and an 

observing instrument. The whole principle is identical to 

the one explained in Figure 4, with the constraints that the 
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Four CIE standard illuminants 
Illuminant White point CIE 1931

(x, y)
White point CIE 1931

(X, Z), Y = 1
CCT (K) Represents

A 0.4476, 0.4074 1.0985, 0.3558 2855.5 tungsten filament lamp

D50 0.3457, 0.3585 0.9642, 0.8250 5001 average daylight around 5000 K

D65 0.3127, 0.3291 0.9504, 1.0886 6503 average daylight around 6500 K

E 0.3333, 0.3333 1, 1 5455 equi-energy radiator

 

Table 1. Some summarising data on four CIE standard illuminants. The CCT values for A, D50 and D65 are from the ISO/CIE 

11664-2:2022 standard (International Organization for Standardization, 2022). The white points were computed with the 

CIE 1931 2° XYZ CMFs, and the standard illuminants’ SPD tabulated in the same ISO standard.
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Figure 12. Colour measurement: an interplay between illuminant, sample and instrument.

Colorimetry, Molada-Tebar & Verhoeven

light source is usually a CIE standard illuminant and the 

instrument a CIE standard observer. Once the light of the 

(standard) illuminant hits the object, a fraction of the entire 

SPD gets reflected—which, as said before, depends on the 

object’s physical and chemical structure. Like the output 

of a light source, the spectral reflectance of an object can 

be measured and graphed. This graph is called the spectral 

reflectance curve; it quantifies which wavelengths get 

reflected and by how much (see Figure 12 on the right or 

Figure 13 in the middle).

Finally, a colorimeter will produce XYZ tristimulus 

values. Colorimeters have internal filters and processing 

algorithms, so they can mimic the CIE 1931 2° or CIE 1964 

10° XYZ CMFs and integrate the stimulus over them. 

Colorimeters are great devices, but they are not as accurate 

as spectrophotometers. In addition, the operating principles 

of colorimeters and spectrophotometers are dissimilar 

(Berger-Schunn, 1994). A colorimeter solely observes 

the incoming stimulus and provides the XYZ coordinates 

to characterise the colour of that stimulus. As such, they 

are often used to characterise computer monitors. In 

contrast, a spectrophotometer has a standard light source 

integrated, usually a simulation of the D65 illuminant (even 

though they may include additional standard illuminants). 

This light source illuminates the sample, which partly 

reflects a portion back into the spectrophotometer. Since 

the instrument knows the exact SPD of its integrated light 

source, it can compute the object’s reflectance from the 

stimulus it receives. In that way, spectrophotometers can 

be placed on any part of an object to accurately measure 

that sample’s spectral reflectance. This spectral reflectance 

curve can be considered a unique spectral fingerprint of that 

object part. At that stage, the instrument has all the pieces 

to generate the XYZ values of the sample: it knows the SPD 

of the illuminant and the sample’s spectral reflectance. 

Both can now be multiplied into a stimulus; the latter gets 

integrated over a CIE standard observer to yield 2° or 10° 

CIE XYZ tristimulus values (see Figure 13) (CIE, 2018; Hunt 

& Pointer, 2011).

Figure 12 depicts these two different pathways: either 

a colorimeter computes CIE XYZ values directly, or the 

latter are obtained mathematically after first calculating 

the exact spectral reflectance of the sample. The problem 

with a colorimeter is that the illuminant can remain 

entirely unknown. And since the stimulus is a function 

of the illuminant, a sample will feature different XYZ 

values according to the light source. That is why XYZ 

values for colour reference targets (like the well-known 

ColorChecker series by X-Rite, now produced by Calibrite) 

are always defined for a particular illuminant. And that 

is why well-defined standard illuminants are essential. 

If a non-standard illuminant were used to express the 

XYZ values of an object, these values would be worthless 

without considering the entire illumination SPD. Agreeing 

on some standardised illuminants makes communication 

of colour values thus more straightforward. Moreover, 

using a spectrophotometer to directly measure the object’s 

spectral reflectance, the XYZ colour values can be computed 



- goINDIGO 2022document | archive | disseminate graffiti-scapes 

102

for any known SPD. That is why spectrophotometers are 

recommended, even though they are more expensive than 

colorimeters.

At this point, it is essential to address if one can rely on a 

conventional digital camera for colour measurement, thus 

effectively simulating a colorimeter or spectrophotometer. 

Using the reasoning established before, one can state 

that every pixel of a digital graffito photo results from an 

illumination’s SPD interacting with the graffito’s reflectance 

at a specific point, thus yielding a spectral stimulus which 

gets integrated over the camera’s spectral sensitivity 

curves. In this chain, it is only straightforward to measure or 

estimate the SPD of the illuminant with a spectrometer (see 

the left graph of Figure 13). So how can one get accurate 

colour data from the raw pixel values registered by the 

camera? Sections 3 and 4 will cover this topic.

3. The Birth and Storage of Image Pixels

3.1. Image Sensors: A Collection of Photosites

Analogue signals are continuous and exist in the tangible 

world as functions of space and time. Digital signals are 

found inside computers and are merely a collection of 

discrete states. Once an analogue signal is digitised, perfect 

clones become possible. The digital product is, however, 

always an approximation of the analogue reality because 

this numerical translation is accomplished by the processes 

of sampling and quantisation (both explained below). 

The analogue signal digitally captured by photography 

or any other form of optical imaging is the continuously 

varying electromagnetic radiation reflected or emitted by 

the scene. In the case of traditional photography, a digital 

image is generated by converting the visible portion of 

radiant energy into an electrical output signal which is then 

digitised.

All cameras comprise optical elements such as lenses 

and filters that gather electromagnetic radiation and 

focus it onto their imaging sensor. For applications like 

conventional photography, these imaging sensors consist 

of a two-dimensional array of individual photon-sensing 

sites or photosites (Figure 14). The photodetector is the key 

component of such a photosite, as it collects light during 

the exposure time. Nearly all imaging sensors have one 

photodetector per photosite, although Foveon’s X3 image 

sensor features three detectors per site (Lyon & Hubel, 

2002). Depending on the sensor design, the individual 

photosites may contain more or less circuitry, and the 

photon-receiving surface area of the photodetector may 

be smaller or larger. Throughout the years, academia and 

industry have proposed diverse photosite arrangements 

and photodetector designs to achieve specific performances 

(e.g. increase the image’s spatial resolution or optimise the 

spectral sensitivity of the imaging sensor).

Most photo cameras feature an imaging sensor in which 

one photodetector contributes one effective pixel to the 

image. For instance, a 24-megapixel digital camera has an 

imaging sensor built-up of at least 24 million photosites/

photodetectors distributed in rows and columns (for 

example, 6000 columns by 4000 rows). ‘At least’ is essential 

here since additional photosites handle tasks like dark 
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Figure 13. Scheme for the computation of CIE XYZ values from reflectance data.
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signal correction (see Section 4.1) and white balancing (see 

Section 4.2).

3.2. Sampling: Collecting Photons

The fundamental building blocks of any digital image are 

called pixels (Billingsley, 1965) or pels (Schreiber, 1967), 

coined terms for picture elements. To create these pixels, 

an imaging sensor inside a conventional photo or video 

camera collects incoming photons over the area of every 

photosite. However, not all photons are collected, only 

from the incident visible electromagnetic radiation (i.e. 

light). To achieve this, the imaging sensor features a filter 

on top (the so-called hot mirror; Figure 14) that blocks non-

visible electromagnetic radiation. Without this filter, the 

sensor would also detect near-ultraviolet and near-infrared 

radiation, making it impossible to render the scene colours 

as humans perceive them.

As Figure 14 depicts, none of the photosites captures the 

entire visible spectrum. A mosaic of thin, coloured filters 

ensures that every photosite only gathers one particular 

part of the incident light. This Colour Filter Array (CFA) 

comes in various designs, but digital cameras mainly use a 

so-called Bayer pattern which features twice as many green 

filters as blue or red ones (Bayer, 1975). So per photosite, 

photons are solely gathered in one of the three 100-nm-

wide spectral bands, being the Blue waveband (with 

wavelengths from 400 nm to 500 nm), the Green (500 nm 

to 600 nm) and Red (600 nm to 700 nm) spectrum (Figure 

14).

This process lasts as long as the exposure lasts (e.g. 2 s or 

1/250 s). All the absorbed photons generate an electrical 

charge in every photodetector. After the exposure, every 

single detector’s charge—which is linearly proportional to 

Figure 14. The relative spectral response curves (also known as the spectral sensitivity functions), sensor element layout and 

working principle of a typical off-the-shelf digital photo camera with a Bayer-filtered imaging sensor. NUV and NIR mean 

Near-UltraViolet and Near-InfraRed, respectively.
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the amount of incoming radiation—is read out. It represents 

a sample of the visible electromagnetic energy originating 

from the imaged scene (see Figure 15). In other words, 

photographic pixels are created by sampling the scene in 

the spatial, spectral and temporal dimensions. A digital 

photograph is thus never a very accurate reproduction (in 

absolute terms) since its pixels represent averages in space, 

spectral range, and time.

Figure 15. The complete imaging chain: a digital camera digitises an analogous real-world scene which gets reconstructed on 

a monitor. The lower part of the illustration depicts the overall pipeline (from left to right), including the pixel creation stage. 

On top, the imaging chain is broken down into its radiometric and photometric components. The latter quantities and units 

apply when imaging visible electromagnetic radiation.

Colorimetry, Molada-Tebar & Verhoeven

3.3. Quantisation: Handing Out Digital Numbers

These sample values (i.e. the generated charges) have to be 

mapped onto a discrete set of numbers by a process called 

quantisation. In their most raw form, image pixels are thus 

created by quantising every photosite-specific sample to 

a discrete Digital/Data Number (DN) by the Analogue-

to-Digital Converter (ADC). The total range of tones or 

quantisation values an ADC can create is called the tonal 

range. The ADC’s bit depth determines the image’s tonal 

range: quantisation with N bits rounds all possible charges 

to these 2N values. For example, a conventional 12-bit ADC 

can discriminate 212 or 4096 tones; every pixel gets one 

of those 4096 possible discrete DNs, 0 for the lowest and 

4095 for the highest possible charge.

Raw photo pixels are thus sampled and quantised versions 

of a continuous analogue spectral signal (Verhoeven, 2018). 

These samples are determined by a pair of pixel coordinates 

(r and c, indicating row and column) and one specific value 

(the DN). An array of these pixels is called a digital image, 
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mathematically represented as an M × N matrix of numbers, 

M and N indicating the image dimensions in pixels. However, 

at this stage, every pixel only has one value, one DN. Section 

4 will cover all the processing steps that are needed to turn 

these raw DNs into a colour photograph where every pixel 

contains one digital number for the Red, one for the Green 

and one for the Blue spectral band (which explains why 

photographs in their final, processed form are often called 

RGB images). So, the processed photos a camera generates 

from the initially captured raw pixels can be represented 

by O matrices of M × N elements, O being the number of 

spectral bands. O is three for an RGB image and one for a 

greyscale image.

3.4. RAW Versus JPEG and TIFF

The last paragraph mentioned two types of photographs: 

photos containing raw pixel values and fully processed RGB 

output photos. This dichotomy or ‘choice’ is also reflected in 

many digital cameras, which can usually produce and store 

both image types:

1.	 An image which holds per pixel the single DN 

captured via its corresponding photosite. This 

image is typically referred to as the RAW photo or 

RAW file. RAW is not an acronym. It only signifies 

raw or minimally processed image sensor data 

with pixel values that are linearly related to the 

incoming radiation in the Red, Green or Blue 

visible spectral band. RAW can thus be considered 

the only scientifically justifiable file format 

(Verhoeven, 2010). However, the RAW format is 

not all roses. Even though most dedicated digital 

cameras support saving RAW files, they all have 

a manufacturer-specific structure and extension, 

like *.NEF for Nikon, *.RAF for Fuji, *CRW or 

*.CR2 for Canon and *.GPR for GoPro. Adobe also 

launched its open-source Digital NeGative (or 

*.DNG) format in 2004, attempting to standardise 

the RAW file format. However, most manufacturers 

refrain from implementing it. In addition, RAW 

data need many processing steps to end up with 

the second image type: a normal-looking photo. 

 

2.	 A highly-processed viewable image with pixels 

nonlinearly related to the captured stimulus. This 

image is usually expressed in the sRGB colour 

space and saved as a JPG/JPEG-compressed 

image or TIFF file. When talking about a photo, 

this viewable type of image is meant. Even though 

some dedicated cameras (and smartphones) might 

not offer the option to save the RAW image, the 

latter always forms the basis to yield a pleasing 

output photo.

In addition to the pixel values or DNs that encode the real-

world scene, both image types contain Exif (Exchangeable 

image file format) metadata. These metadata describe 

image acquisition parameters (such as the serial number 

and model of the camera, the aperture, focal length, shutter 

speed, possible flash compensation, and the date plus 

time of photo acquisition) in mandatory, recommended 

and optional tags stored in a separate segment of the file 

(Camera & Imaging Products Association, 2010-2019). 

Suppose the camera is GNSS (Global Navigation Satellite 

System)-enabled. In that case, tags can also hold the 

latitude, longitude and altitude of the camera’s geographical 

location. All these Exif-defined tags are created by the 

camera and stored simultaneously with the DNs in the 

image file, making it possible to analyse them afterwards.

4. ‘Developing’ or Rendering Raw Digital Numbers

Many processing or ‘digital development’ or ‘rendering’ 

steps are involved in producing a normal-looking output 

photo from a RAW image. These steps either happen inside 

the digital camera or are executed afterwards via dedicated 

RAW conversion computer software. Despite the variety 

of RAW processing pipelines detailed in the scientific 

literature, there is agreement on the central processing 

stages (Karaimer & Brown, 2016, 2019; Ramanath et al., 

2005; Sumner, 2014). Within the scope of project INDIGO, 

we have developed the software package COOLPI. COOLPI, 

or the COlour Operations Library for Processing Images, is 

open-source and freely available on GitHub: https://github.

com/GraffitiProjectINDIGO/coolpi. The software can 

also be installed directly from the Python Package Index 

repository or PyPi (https://pypi.org/project/coolpi) using 

pip (by running “pip install coolpi” on the system shell). 

https://github.com/GraffitiProjectINDIGO/coolpi
https://github.com/GraffitiProjectINDIGO/coolpi
https://pypi.org/project/coolpi
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COOLPI relies on rawpy (https://pypi.org/project/rawpy), a 

Python wrapper for the LibRaw library (https://www.libraw.

org), to facilitate many of the well-known RAW processing 

steps, but with adaptations at several stages to prioritise 

colour accuracy (see also Molada-Tebar et al. (2018)).

Generally, one can distinguish six main steps to convert a 

RAW image file into a viewable RGB photo expressed in 

a colour space like sRGB. Some implementations might 

change the sequence of these steps, but the order in which 

they are detailed below is relatively standard. Figure 16 

summarises all these steps and related terminology. It can, 

therefore, function as a visual guide for the rest of this 

paper.

4.1. Linearisation, Black-level Subtraction and Scaling

Although the sensor’s response to the incoming illumination 

is mainly linear (Chakrabarti et al., 2009), some cameras 

introduce a non-linear operation to compress the data. For 

example, many Sony cameras of the NEX and ILCE series 

feature a 14-bit ADC, but these 14-bit data get compressed 

to store them as 11-bit data, thereby reducing the file size 

considerably. Since all subsequent RAW development 

steps expect linear data, it is necessary to correct any 

non-linearity from the start (Ramanath et al., 2005). This 

linearisation step is straightforward: the linearisation 

curve embedded in the metadata of the RAW file gets 

applied to the stored data (from now on indicated as R, G 

and B), thereby decompressing the RAW data back to its 

original bit-depth. For example, Figure 17 shows how the 

Nikon D70’s linearisation curve maps the initially stored 

but compressed data with a limit value of 683 back to the 

12-bit maximum value of 4095. In other words: the original 

RAW data in the D70 image are compressed by the camera 

into 9.4 bits (i.e. log
2 

683). Via the linearisation curve, the 

compressed data are ‘unpacked’ to 12 bits (i.e. DNs from 

0 to 4095). The Nikon D5600 linearisation curve shown 

in Figure 17 indicates that the 14-bit RAW data (i.e. DNs 

from 0 to 16383) are compressed into 12 bits. Figure 18 

visualises the effect of this curve. Figure 18A shows the 

non-linear version of the RAW file. Halfway through the 

image’s width, B depicts the linearised version. 

A black-level correction to compensate for dark current 

accompanies this step. Dark current is a signal generated 

even when the sensor is not illuminated. In other words: 

pixels which should be perfectly black still have some value. 

This value increases with exposure time and is temperature 

dependent. The warmer an image sensor, the more dark 

current gets produced. To render black as truly black, 

the lowest value in the RAW file (or some default value) 

is considered pure black and gets subtracted from every 

image pixel (Figure 18C).

Colorimetry, Molada-Tebar & Verhoeven

Figure 16. The figure outlines the entire RAW development chain covered in this paper. All matrix operations directly influ-

encing the final colour are indicated in a chromatic tone. The factors on which those matrix operations depend, and the colour 

space or white point transformations they effectuate, are also indicated.

https://pypi.org/project/rawpy
https://www.libraw.org
https://www.libraw.org
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Figure 18. A Nikon D5600 RAW file in its initial processing stages. A) indicates the non-linearised image, while B) shows the 

linearised version (which is slightly brighter). C) displays the linearised, black-subtracted version, while D) shows the RAW 

image scaled to the [0.0, 1.0] interval. The CFA patterning is apparent from the zoomed-in parts in the bottom row. All images 

have been subjected to a 1/2.2 gamma encoding, as they would otherwise be too dark for display.

Colorimetry, Molada-Tebar & Verhoeven

Figure 17. The linearisation curves of the Nikon D70 and Nikon D5600. These curves reside in the Exif metadata of the RAW 

files.
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Some RAW converters then scale the input data (usually 12- 

or 14-bit) to 16-bit integer values. For a 14-bit file (which 

can hold 214 or 16,384 different integer values), the most 

straightforward scaling approach is multiplying all DNs 

with four so that every pixel features a value between 0 and 

65,535 (i.e. 216-1). Other RAW converters (and COOLPI) 

rescale the raw R, G and B DNs to the [0.0, 1.0] floating-
point interval (Figure 18D). There are also more adaptive 

scaling approaches possible. These could ensure that 

details in the brightest portions of the image (the so-called 

highlights) never get clipped. The ‘Exposure’ or ‘Exposure 

compensation’ sliders found in RAW converters like Adobe 

Camera Raw (https://helpx.adobe.com/camera-raw/using/

supported-cameras.html) or RawTherapee (https://www.

rawtherapee.com) enable interactive scaling to account for 

over- or underexposure. Although COOLPI does not offer 

such interactive scaling, the authors are experimenting 

with automatic image-specific scaling to unify the exposure 

of all photographs from one particular graffito because 

exposure values cannot be spot on every time. Finally, some 

RAW converters also feature sliders that non-linearly scale 

the DNs, typically to brighten the shadows or compress the 

highlights in the image. If a colour-accurate rendering of the 

scene is wanted, one should stay clear of such operations.

The bottom row of Figure 18 illustrates that, at this 

stage, the image looks like a patterned greyscale image. 

The greyscale nature relates to the fact that there is still 

only one DN per pixel (either R, G or B); the patterning 

originates from the CFA. It is easy to discern because 

most objects reflect differently in the Red, Green and Blue 

spectral ranges. Neighbouring photosites capture thus very 

different DNs, even under uniform illumination.

4.2. White Balancing

White balancing is the most crucial RAW development 

step to guarantee that the output photo represents colours 

faithfully. In short, white balancing ensures that white looks 

white and grey looks grey in the output image. A perfectly 

white pixel should have identical RGB values, like R: 255 – 

G: 255 – B: 255 for an 8-bit output image. However, this 

does not only hold for white pixels. Any spectrally neutral 

or achromatic object (i.e. reflecting any wavelength of light 

with identical magnitude) that varies from black over grey 

to white should feature equal RGB values in the final output 

image. So, when a light source with a flat SPD over the 

visible spectrum (like illuminant E) gets diffusely reflected 

from a light grey and spectrally neutral card, one expects 

the camera to digitise the resulting equi-energy stimulus 

with identical R, G and B pixel values. Figure 19A shows 

this not to be the case since the spectral response curves 

of the camera’s sensor have different widths and heights. 

This usually results in a high G value and lower B and R 
values. The camera counteracts this by normalising the R 

and B values to the G DN via multiplication with a scaling 

factor or so-called multiplier value, thus ensuring identical 

R, G and B values for all pixels of the achromatic card (see 

Figure 19A).

However, the illumination source also influences these 

multipliers. Suppose illuminant A shines on the same 

spectrally neutral card. The subsequent stimulus will now 

be most substantial in the Red spectrum, which results in 

high R DNs (sometimes even higher than the G ones) and 

low B values (see Figure 19B). In this case, the camera has to 

slightly reduce the R pixel values (with a multiplier smaller 

than 1) and boost the B DNs to ensure the achromatic card 

looks light grey and not orange-red.

To determine these multipliers accurately, the camera must 

estimate (or be told) the scene illumination when acquiring 

the photo. Since the camera cannot consider an entire 

SPD, the illumination’s dominant colour is characterised 

by the Correlated Colour Temperature (CCT), a concept 

introduced in Section 2.5. Human eyes constantly adjust to 

such CCT changes and can tell a wall is white, irrespective of 

the illumination conditions (Hung, 2006; Livingstone, 2002). 

Digital sensors and film are unable to do so. In the analogue 

era, one had to change the type of film or use appropriate 

corrective filters to avoid colour casts. In digital photography, 

the camera needs to know the predominant colour of 

the illumination to calculate the correct multipliers (E. Y. 

Lam & Fung, 2009). That is why the camera automatically 

estimates the illumination’s CCT when acquiring a photo; 

or the photographer manually determines this number, 

often via the camera’s white balance presets like “cloudy”, 

“fluorescent”, “shade”, or “direct sunlight” (see Figure 10 

for common values). With an established CCT, the camera 

computes the illumination’s white point, from which the 

correct multipliers get derived. Finally, those multipliers 

Colorimetry, Molada-Tebar & Verhoeven

https://helpx.adobe.com/camera-raw/using/supported-cameras.html
https://helpx.adobe.com/camera-raw/using/supported-cameras.html
https://www.rawtherapee.com
https://www.rawtherapee.com
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get saved in the Exif image metadata. Figure 19 mentions 

the white point values above the stimuli. Irrespective of its 

determining procedure, the estimated scene illumination 

white point is known as the adopted white (International 

Organization for Standardization, 2012) or camera neutral 

(Adobe, 2021).

When developing the RAW file (either by the camera or—

as in the case of INDIGO with COOLPI—afterwards on a 

computer) into a JPG or TIFF, these multipliers are used to 

recalculate the linearised, black-subtracted and scaled raw 

pixel values of all channels to make sure that the scene’s 

spectrally neutral zones—and by extension also all the other 

Colorimetry, Molada-Tebar & Verhoeven

Figure 19. A) depicts how the interaction of a spectrally flat stimulus with the spectral responsivity curves of a digital camera 

yields unequal R, G and B values. The multipliers can be computed knowing that the stimulus is supposed to generate three 

equal values. Row B depicts a similar situation with standard illuminant A diffusely reflected off a spectrally neutral reference 

card. This stimulus mainly contains red light, so the multipliers are adjusted accordingly. Row C displays an experimentally 

defined stimulus, resulting in maximum RAW values [1, 1, 1] for the Nikon D700. The illumination’s SPD (which looks like the 

stimulus since the illumination got diffusely reflected from a spectrally neutral card) can be summarised via its XYZ tristim-

ulus values [1,3059, 1, 1.1456] or (x, y) chromaticity values (0.3784, 0.2897). These values constitute the reference white of 

the Nikon D700 RAW space. Data on the D700’s spectral response curves come from the camspec database (https://www.

gujinwei.org/research/camspec/camspec_database.txt) published by Jiang et al. (2013).
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colours in the digital image—appear without major colour 

casts in the final output image, irrespective of illumination 

condition. Technically, a diagonal matrix D with the channel 

multipliers takes care of this (see Figure 20).

Figure 16 indicates that white balancing chromatically 

adapts the camera’s adopted white to the so-called 

camera RAW space reference white (Rowlands, 2020b). As 

mentioned in Section 2.5, the reference white of the camera 

RAW space equals the SPD or chromaticity coordinates of 

the illumination that generates identical R, G and B values 

when diffusely reflected off a spectrally neutral target. In 

other words, only this illumination will yield the equal RAW 

values one expects for a spectrally neutral target. Row C of 

Figure 19 shows the reference white SPD and chromaticity 

coordinates for a Nikon D700 camera. When locating 

these chromaticity coordinates in the diagram of Figure 

8, it is clear that this camera’s reference white is more of a 

reddish, almost magenta colour rather than a neutral one. 

In the colour space transformation step (Section 4.5), this 

RAW space reference white will be chromatically adapted 

to the output colour space’s D50 or D65 reference white 

(called the encoding white).

Although digital cameras are usually reasonably good at 

estimating the CCT value/the white point for outdoor 

illumination conditions, more reliable values can be 

computed from a photographed spectrally neutral card 

(a so-called white balance card) or the illumination’s SPD 

(see Figure 20, and also Section 6.2 for a comparison). 

That is why the INDIGO staff uses a Sekonic C-7000 

SPECTROMASTER portable handheld spectrometer to 

measure the graffito’s spectral illumination directly before 

starting the photographic documentation. The latter begins 

with a photo from an X-Rite ColorChecker Passport Photo 2 

reference target. Since this target features a few spectrally 

neutral patches, one can use their RAW DNs to extract the 

channel multipliers directly. Thus, this initial photo serves as 

a backup solution to the spectrometer data (see Verhoeven, 

Wogrin et al. in this volume for more details about the data 

acquisition pipeline).

The image is still greyscale at this point (see Figure 20), but 

Colorimetry, Molada-Tebar & Verhoeven

Figure 20. Three crops of the Datacolor Spyder Checkr reference chart, visible beside the smaller X-Rite ColorChecker Pass-

port Photo 2 below a graffito in Figures 18 and 21. Both reference targets contain spectrally neutral patches (the outer left 

ones in the crop). On the left is a crop of a RAW image that is not white-balanced, which is conceptually identical to multiplying 

it with a white balance matrix D containing only 1’s on its diagonal. The middle crop represents a white-balanced RAW image 

using the multipliers determined by the camera’s automatic illumination estimation and stored in the image’s Exif metadata. 

These multipliers are not sufficiently accurate; the neutral patches still display some CFA patterning, indicating that their 

pixels feature dissimilar R, G and B values. The image on the right eliminates this because it is adequately white-balanced by 

multiplying every R DN by 2.68 and every B DN by 1.03. These numbers were determined from the RAW pixel values of the 

lower neutral patch.
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spectrally neutral objects (like dedicated white balance 

cards or neutral patches of a colour reference chart) no 

longer display CFA-related patterning. In other words, their 

linear R, G and B values will all be very similar (ignoring 

image noise and illumination differences). However, the 

mosaic pattern is still apparent for chromatic objects (like 

the two patches on the right of the chart crop in Figure 

20) since they have different reflectances in the visible 

spectrum’s Red, Green and Blue parts.

4.3. Data Clipping

White balancing commonly leaves the G DNs generated by 

the green-filtered photosites alone. After scaling to either a 

[0.0, 1.0] floating-point range or a [0, 65535] integer range, 

no G DN will surpass either 1.0 or 65,535. However, that is 

not the case for the B and R DNs. Since they have all been 

multiplied with a constant factor in the white balancing 

step, the R and B values of highlight pixels could easily go 

beyond those floating-point and integer maxima. If left 

untreated, this will result in highlights with odd colours.

Imagine a 12-bit RAW image of a graffito with a white 

outline. The entire graffito lies in the shadow, apart from 

a tiny sunlit part of the outline. With a camera exposure 

suitable for the shaded region, the pixels of the white 

outline will feature high G DNs like 3800 (see Table 2). The 

photosites that sample the white sunlit part will overflow 

with photons, yielding saturated pixels with the highest 

possible 12-bit DN: 4095. Since digital cameras are usually 

less sensitive in the Red and Blue spectral range, the R and B 

DNs that make up the white outline are substantially lower; 

even the sunlit pixels are not saturated (see Table 2). After 

rescaling to the [0.0, 1.0] range, the G DNs of the outline in 

the shadow are close to 1. Still, those of the saturated white 

pixels will be 1 (again, the maximum possible value). At this 

stage, the R and B DNs are still far below their maximum 

value because the same constant value was used to scale 

all DNs linearly. However, white balancing changes this 

picture.

Even though white-balanced pixels of the white outline 
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DN range Majority of the white outline Sunlit white outline

u j e u j e

12-bit RAW [0, 4095] 2714 3800 2375 3529 4095 3088

Black-subtracted, scaled RAW
[0, 1] 0.66 0.93 0.58 0.86 1.00 0.75

[0, 65535] 43444 60815 38015 56472 65535 49415

Black-subtracted, scaled, white-balanced RAW
[0, 1] 0.93 0.93 0.93 1.21 1.00 1.21

[0, 65535] 60821 60815 60824 79061 65535 79064

Table 2. Clipping in the R and B channels is often necessary so their maximum values do not surpass those of the G DNs after 

scaling and white balancing.

feature identical high values (i.e. 0.93), a problem occurs 

with the R and B DNs of the pixels representing the sunlit 

white outline. Using a R multiplier of 1.4 and a B multiplier 

of 1.6, both DNs surpass 1.0 with a value of 1.21. At the 

same time, the maximum G DNs remain 1.0 because they 

stay unaltered during white balancing. Because the G DNs 

are too low with respect to the B and R ones, and because 

green and magenta are complementary colours, such green- 

deficient pixels look pinkish or magentish. A processing step 

that clips all channels to the lowest value of the maximum 

R, G and B DNs (i.e. 1.0 here) prevents such false highlights 

colours. Some advanced RAW converters typically offer 

the user a ‘highlight recovery’ slider, which estimates the 

underrepresented highlight component(s) rather than 

clipping it (note that this approach also includes a highlight 

compression to bring all DNs back in the [0.0, 1.0] range). 

And yes, RAW converters must take similar precautions to 

avoid false colours in the shadow areas, which could occur 

with white balance multipliers smaller than 1.0.

4.4. Demosaicing

Even though the linearisation, black-level subtraction, 

scaling and white balancing have changed the initial R, G, 
and B DNs, the RAW file is still a single-channel image in 

which each pixel has only one value, representing either the 

collected Red, Green or Blue incoming light (Figure 21A). To 
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Colorimetry, Molada-Tebar & Verhoeven

Figure 21. A mosaiced image (A) is a one-band, greyscale image that still shows CFA patterning in chromatic areas. After dem-

osaicing (here with the algorithm by Malvar et al. (2004)), a three-band colour image is obtained for the first time in the RAW 

development process. The image colours seem realistic but desaturated. The insets of column C result from transforming B 

via a colour rotation matrix R into the linear sRGB output colour space, followed by a gamma encoding. Although nonlinear 

gamma encoding occurs only at the end of the RAW development chain (i.e. Figure 21C), it was also applied to Figures 21A 

and B because they would otherwise appear too dark and be useless as illustrations.

end up with an image where every pixel features an RGB 

triplet, the remaining two values are interpolated from the 

surrounding pixels in a process called CFA interpolation, 

de-Bayering or demosaic(k)ing. An immense range of 

demosaicing algorithms has been developed to tackle 

this interpolation process and the various artefacts it can 

introduce. Most commercial RAW converters only offer 

one undisclosed algorithm. At the same time, free and open-

source software like RawTherapee and COOLPI provide 

various demosaicing options. The demosaiced result is an 

RGB image, a three-channel or three-band image featuring 

a ‘channel’ or ‘band’ for all the R values, one for all the G and 

one with all the B values (see Figure 21B).

COOLPI, and many other RAW converters, also provide 

the option to create minimally/half-size/2x2 demosaiced 

images. The result is not obtained via an actual demosaicing 

algorithm because no values are interpolated. However, 

this approach bins each quartet of 2x2 pixels (R, G, G, B) 

into a single RGB pixel. The B and R values are taken as-is, 

while the G DN is the average of the two G values. The result 

is an image with only a quarter of the megapixels of a fully 

demosaiced RAW image.

At this point, we can also explain Figure 1 better. The 

middle row shows RAW colour images with a strong green 

colour cast. These demosaiced images were not white-

balanced so that they could visualise the dominance of the 

green spectral sensitivity curve. The images are also very 

dark because they lack gamma encoding. The lack of this 

non-linear encoding is expected at this stage of the RAW 

processing pipeline as it only happens at the very end (see 

Section 4.6). However, since this makes it hard to visualise 

what is happening, a 1/2.2 gamma encoding was applied to 

Figures 18, 20, 21A and 21B for visualisation purposes.

4.5. Colour Space Transformation

Although the RAW processing pipeline finally yielded a 

colour image, the pixels’ RGB values are still expressed in 

the camera-specific RAW space. To ensure that imaging 
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hard- and software know how to interpret these numbers, 

pixel values must be converted into a standard RGB output 

colour space like sRGB or Adobe RGB (1998). This step is 

likely the most complex, and together with white balancing, 

critical in pursuing accurate photo colours. Without going 

into detail yet, the RAW converter uses multiplications 

with one or more matrices to express the black-subtracted, 

scaled, white-balanced, clipped, and demosaiced pixel 

values into a standard colour space. Various approaches 

exist to obtain these matrices (Rowlands, 2020a), all with 

varying accuracy and applicability.

One possible approach is to use the matrices that research 

labs or imaging companies have derived. For instance, 

the Paris-based company DXOMARK (https://www.

dxomark.com) scientifically assesses cameras and lenses. 

Amongst a plethora of quantitative data, their website 

provides the matrices for most digital cameras to convert 

the white-balanced RAW RGB data to sRGB for the D50 

and A illuminants. Figure 22 depicts both illuminant-

specific matrices for a Nikon Z7ii camera. Imagine a scene 

photographed using D50 illumination. One would merely 

need to multiply the matrix of Figure 22 by the white-

balanced, demosaiced RGB values obtained after step 4.4 

to end up with perfect colours. To ensure that neutral tones 

in the white-balanced image (for example, [0.3, 0.3, 0.3]) 

get mapped to neutral tones in the final sRGB image, the 

sum of all row coefficients always equals [1, 1, 1] for these 

matrices.
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Figure 22. These matrices from https://www.dxomark.com/Cameras/Nikon/Z7II---Measurements transform white-bal-

anced, demosaiced Nikon Z7ii RAW image data to the sRGB colour space. A 3x3 matrix is provided for two illumination con-

ditions: the standard illuminants D50 and A. Some authors call such matrices colour rotation matrices R (Rowlands, 2020a).

However, illumination never has the same SPD as the 

theoretical D50 illuminant (although natural daylight could 

come close). To deal with these and other complexities, 

the colour transformation step usually comprises three 

steps instead of just one matrix. First, white-balanced and 

demosaiced RGB values are transformed into the CIE XYZ 

colour space. Afterwards, another matrix transforms the 

XYZ values into the linear form of a specific RGB output 

colour space like sRGB or Adobe RGB (1998). Between 

both transformations, a chromatic adaptation accounts for 

the fact that these output colour spaces are determined 

for an illuminant which likely differs from the illumination 

used while photographing. Because of its importance and 

complexity, Section 5 further details this step.

4.6. Gamma Encoding, Bit-depth Reduction and JPEG 

Encoding

At this stage, the entire RAW conversion process has 

been linear. However, because the first generations of 

computer monitors displayed pixel values in a non-linear 

fashion, colour spaces like sRGB and Adobe RGB (1998) 

also have a gamma value defined to cancel out this non-

linear behaviour. This value is fixed for every colour space 

but often around 1/2.2 (see Figure 8). Multiplying every 

pixel with this gamma value is the only non-linear tonal 

transformation in the entire RAW development pipeline.

RAW converters often combine this colour space-related 

gamma encoding with tonal mapping. The latter can 

produce photos with more contrast and punchier colours 

than real life (see Figure 1 at the lower right), as most people 

prefer that (Parulski & Spaulding, 2003). To keep colour 

accurate, COOLPI does not apply such tonal mapping. If 

tone mapping would really be needed—for instance, to fit 

the high contrast ratio of a digital photo into the often lower 

contrast ratio supported by monitors or photo paper—it 

should ideally occur in the colour space transformation 

step (Torger, 2018). Finally, this step includes a bit-depth 

https://www.dxomark.com
https://www.dxomark.com
https://www.dxomark.com/Cameras/Nikon/Z7II---Measurements
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reduction and JPEG encoding since most photographs are 

saved as 8-bit JPG files.

A possible seventh step—occurring before the bit depth 

reduction—to achieve the final rendered photo is via 

additional (global or local) pixel editing. Operations 

like sharpening, correcting lens distortion or chromatic 

aberration, denoising and fixing red eyes all aim to remove 

imperfections and make the image more pleasing. Although 

many RAW converters combine the conversion steps 1 to 

6 with such editing capabilities (e.g. Adobe’s Lightroom, 

Phase One’s Capture One, RawTherapee), pure RAW 

converters like dcraw (Coffin, 2008) and LibRaw (LibRaw 

LLC, 2021)—and right now also COOLPI—do not offer 

this functionality. The absence of such image processing 

capabilities in COOLPI explains why the lower right blue 

patch in Figure 21C still contains image noise, while the 

neutral patches’ boundaries still suffer from ‘fringes’ of 

colour due to chromatic aberration of the lens.

5. The Complex Marriage Between Digital Cameras and 

Colour

5.1. Luther and Ives

In an ideal world, a camera’s sensor spectral response 

curves would mimic the cone spectral sensitivity curves 

of the human eye (or be a linear transformation thereof, 

like the 2° or 10° CMFs) (Sharma, 2003). Only in that way 

would a camera reproduce accurate colours congruent 

with the colour experience of a human observer. This is the 

Luther–Ives condition (Ives, 1915; Luther, 1927). However, 

Figure 23 illustrates that a camera’s spectral response 

curves might seriously deviate from the human cone 

responses or any existing set of positive CMFs (Parulski & 

Spaulding, 2003). Figure 23 displays the Samsung Galaxy 

S8 smartphone camera’s spectral response curves and their 

area-normalised version. The second plot means that the 

area under each sensitivity curve is identical, so they would 

produce equal RGB values if equi-energy illuminant E were 

the stimulus. This plot looks quite different from CIE 1931 

2° CMFs (right part of Figure 23), which are by default area-

normalised.

What does this difference mean? Imagine a given spectral 

stimulus. This smartphone would digitise this stimulus 

into raw RGB values. At the same time, the human eye 

and a colorimeter would generate LMS and XYZ tristimulus 

values. But because the smartphone’s digital camera does 

not satisfy the Luther–Ives condition, it is impossible to 

linearly transform the camera’s raw RGB DNs to exactly end 

up with these ideal LMS or XYZ coordinates. However, this is 

not solely so for smartphone cameras. It is safe to state that 

no standard digital photo camera meets the Luther–Ives 
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Figure 23. The relative spectral sensitivity curves of a Samsung Galaxy S8 smartphone camera on the left (data from Burg-

graaff et al. (2019)) with its area-normalised version displayed in the middle. This plot can be compared to the CIE 1931 2° 

CMFs on the right (CMF data from Colour and Vision Research Laboratory (2021)). The onset of the invisible near-ultraviolet 

and near-infrared regions is always indicated in grey.
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condition (see also Holm (2006) and Jiang et al. (2013)). In 

other words: digital cameras are far from perfect colour-

capturing instruments because colour accuracy is only one 

out of several, often mutually exclusive image criteria (such 

as image noise, light gathering efficiency, resolving power, 

and manufacturing costs) that are taken into account when 

designing an imaging sensor (Berns, 2001; Imai et al., 2001).

5.2. Camera-Specific Transformations

Although a camera’s sensor spectral response curves 

would ideally mimic the cone spectral sensitivity curves of 

the human eye or any of the CMFs, Figure 23 shows these 

curves are different in shape and seem slightly shifted 

with respect to one another. One must thus find a way to 

minimise the differences between the two sets of curves or 

develop a good transformation from the RGB values into 

XYZ values. A long look-up table with all corresponding 

values (e.g. RGB values [768, 3200, 2304] correspond to 

XYZ values [5, 78, 19]) would be possible but impractical. 

However, with linear algebra, one can find a 3x3 matrix to 

do that.

Suppose a perfect 3x3 matrix to transform the camera’s 

initial RGB values to XYZ values would exist. Even then, 

that transformation would be camera-dependent as the 

imaging sensors used by different camera brands and 

models feature minor to more considerable variations in 

spectral responsivity (see Figure 24). In other words: after 

demosaicing, all RAW RGB pixel values are expressed 

using the RGB colour model, but because different camera 

sensors will generate different RGB values when they 

simultaneously observe the same scene using the same lens 

under the same lighting conditions, the camera RAW space 

is device-dependent (Punnappurath & Brown, 2020). And 

to add a final touch of complexity: this 3x3 transformation 

is also illumination- and (often) scene-dependent because 

they both determine the unlimited amount of spectral 

stimuli a camera can sample. The following three sections 

cover how one can solve all this complexity.
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Figure 24. The three spectral responsivity curves of the imaging sensor inside a Nikon D200 semi-professional digital camera, 

an Apple iPhone 11 mobile phone and the DJI Phantom 4 Pro quadcopter camera. The spectral data for the last two imaging 

sensors came from Tominaga et al. (2021) and Burggraaff et al. (2019), respectively. The onset of the invisible near-ultraviolet 

and near-infrared regions is indicated in grey. Note that these response curves are the combined result of the transmittance 

by the camera lens, hot mirror and CFA elements, plus the quantum efficiency of the silicon sensor.

5.3. Colour Space Transformation: Three Matrices…

Like a coordinate transformation changes coordinates from 

one coordinate reference system to another (Iliffe & Lott, 

2008), colour transformations map colour data from one 

colour space to another. As explained above, a camera-, 

scene- and illumination-dependent linear 3x3 matrix can 

transform the white-balanced and demosaiced RGB pixel 

values from the device-dependent RAW space to the device-

independent CIE XZY space. Nevertheless, this matrix is 

only one part of the entire colour space transformation 
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step mentioned in Section 4.5. Even though that section 

summarised all processing by one colour rotation matrix 

R, the entire colour space transformation step (and thus 

matrix R) is often split into three 3x3 matrices. In this way, 

each sub-step is easier to standardise and control (consider 

Figure 16 for a visual representation of these steps):

1.	 Transformation to XYZ | RGB 
RAWReferenceWhite

 

to XYZ
AdoptedWhite

: the first step transforms the 

linearised, black-subtracted, scaled, white-

balanced, clipped and demosaiced linear RGB 

data into XYZ values. This is the linear 3x3 

matrix mentioned in Section 5.2. In the academic 

literature, this matrix typically goes by the name 

Colour Correction Matrix, Colour Conversion 

Matrix, Camera Characterisation Matrix or 

Compromise Colour Matrix (all four using 

the acronym CCM). The CCM consists of nine 

elements (see Equation 2); these depend on the 

scene illumination, the imaging hardware (i.e. the 

camera’s spectral response plus the lens’ spectral 

transmission) and the scene values used to 

estimate it (typically 24 patches of a ColorChecker 

reference chart; see Section 5.5).	

 
(2)(2)

2.	 Chromatic adaptation | XYZ
AdoptedWhite

 to 

XYZ
OutputWhite

: although outdoor illumination 

can, to a certain extent, approximate the D50 or 

D65 SPD, it usually differs quite a bit. However, 

output colour spaces like sRGB, Adobe RGB 

(1995) or ProPhoto RGB include a standard 

illuminant in their definition. This standard 

illuminant is the space’s reference white, defining 

how cool or warm a perfect ‘white’ pixel looks 

in that colour space (see Figure 8). Specifying 

colours to a new reference white is technically 

called chromatic adaptation. Thus, a so-called 

Chromatic Adaptation Transform (CAT) is 

needed; another 3x3 matrix CAT to transform 

the capture’s illumination-related XYZ values 

into new XYZ values, expressed with respect to 

the white reference of the output colour space 

(typically XYZ
D50

 or XYZ
D65

). Converting pixel 

values between white points is usually—and thus 

also by COOLPI—performed with a Bradford CAT 

(K. M. Lam, 1985).

3.	 Transformation to RGB | XYZ
OutputWhite

 to RGB
linear

: 

finally, the XYZ
D50

 or XYZ
D65

 coordinates are 

transformed into a common output colour space 

like sRGB or Adobe RGB (1998). COOLPI uses the 

former by default. Although these colour spaces 

are not linear, this third 3x3 Output Space Matrix 

OSM converts to a linear version of the colour 

space. Afterwards, a separate colour space-

specific (see Figure 8) gamma encoding follows to 

end up with the final RGB coordinates that are no 

longer linearly related to the initial RGB data.

5.4. …But Many Possible Combinations

Every OSM to compute linear RGB values is standardised 

and known. For instance, they are freely available on Bruce 

Lindbloom’s webpage (http://www.brucelindbloom.com/

index.html?Eqn_RGB_XYZ_Matrix.html). The same website 

(http://www.brucelindbloom.com/index.html?Eqn_

ChromAdapt.html) also provides common Bradford CATs. 

The main difficulty thus lies in finding the nine unknown 

elements of the first matrix. Although Section 5.5 details 

how to determine the CCM, the subsequent paragraphs 

first address a few variations on the workflow sketched in 

Section 5.3.

•	 The colour transformation step consists of 

three 3x3 matrices. Combined with the channel 

multipliers stored in the diagonal matrix D, 

that makes four matrices (each indicated with 

a specific colour in Figure 16). However, the 

scientific literature covers various ways to unite 

these components (for an overview, see Rowlands 

(2020a)). In addition, some matrices have slightly 

different functions despite bearing the same 

name across the literature. For example, the CCM 

spectrally characterises the digital camera by 

taking values expressed in the camera-dependent 

RAW space and transforming them into the 

device-independent CIE XYZ colour space. Some 

authors and this paper (see next section) compute 
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this matrix based on white-balanced RGB 

data. In contrast, others derive it from the RGB 

values before white balancing. In both cases, the 

procedure is called camera characterisation, and 

CCM is the resulting matrix. A CCM might thus 

include channel multipliers (indicated with ① in 

Figure 25), but the one discussed here does not 

(② in Figure 25). This approach is for a particular 

reason. Decoupling white balancing from the 

RGB-to-XYZ matrix operation allows for easy 

finetuning of the channel multipliers afterwards 

in RAW conversion software like COOLPI (using 

the illumination’s CCT or neutral patches in the 

image; see Section 4.2 and Figure 20). In addition, 

some authors suggest that scaling the R, G, and 

B DNs before demosaicing might yield a better 

quality output image (Rowlands, 2020a). Finally, it 

also makes sense intuitively. By multiplying every 

B and R value with a multiplier, white balancing 

essentially normalises the spectral sensitivity 

curves by area (cf. the central graph of Figure 23). 

Because the CIE XYZ CMFs are area-normalised 

by definition, both sets of curves thus become 

instinctively comparable.

•	 Sometimes, the CCM and a kind of CAT are 

combined. Adobe calls this combination the 

Forward matrix F, and it will transform white-

balanced and demosaiced RGB data directly into 

XYZ data for a D50 illuminant (Adobe, 2021). 

A standard OSM from Lindbloom’s webpage 

(together with a CAT if the output space’s 

reference white differs from D50) takes these 

data into the final linear version of the output 

colour space. Adobe also makes it easy for users. 

Upon converting any proprietary RAW file to 

Adobe’s open-source DNG file format with their 

free Digital Negative Converter (https://helpx.

adobe.com/uk/camera-raw/using/adobe-dng-

converter.html), two forward matrices for that 

particular camera get written into the DNG 

metadata: for the standard illuminants A and D65. 

Adobe has determined both matrices for most 

digital cameras. An enormous but precious effort 

as manufacturers typically do not disclose any 

characterisation information about their cameras. 

Providing a matrix F for two highly different 

illuminants enables DNG-aware software to 

interpolate the final forward matrix for the CCT 

of the actual scene illumination.

•	 Combining all three matrices yields the colour 

rotation matrix R provided via the DXOMARK 

webpage (see Section 4.5) or stored in the 

metadata of certain Olympus and Sony RAW 

files. As Adobe, DXOMARK provides two 

matrices—for illuminants A and D50 (see Figure 

22)—to interpolate a CCT-specific matrix from. 

The camera-embedded matrices typically cover 

a handful of specified CCT ranges. The CCT 

estimated by the camera or determined in the 

RAW development software is again used to 

select (or interpolate) the most suitable matrix R 

from all pre-computed ones.

5.5. Getting to Know Nine Unknowns: Camera 

Characterisation

Determining the nine unknowns of the CCM is a procedure 

known as camera (spectral) characterisation. Since we have 

to transform the white-balanced and demosaiced raw data 

into the CIE XYZ
 
space, having three sets of raw RGB values 

generated by a camera under illumination with a known SPD 

suffices. For example, one could illuminate a graffito with an 

artificial light mimicking a D50 illuminant and photograph 

the graffito. After white-balancing and demosaicing the 

RAW image, the RGB values of three pixels—each from a 

graffito patch with a different colour—are written down. 

Measuring those three actual graffito patches with a 

spectrophotometer yields the XYZ
D50

 counterparts of these 

pixel DNs. Using Equation (2), nine equations arise from the 

two sets of nine values (three sets of three values). Because 

the X, Y, Z, and the R, G, B values are known, these nine 

equations enable computing all unknown elements of the 

colour correction matrix CCM.

However, the resulting matrix would only be effective for 

that specific camera (plus lens), lighting, and graffito. In 

other words, altering any of those three would necessitate 

the creation of a new CCM. Since the constant need for new 

in-situ colour measurements would make this procedure 

practically unfeasible, solutions were developed to simplify 

the spectral characterisation of cameras. The following 
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paragraphs detail the chart-based characterisation method 

since it is ubiquitous and currently the only method COOLPI 

offers. To aid understanding, the upper part of Figure 25 

can function as a visual guideline.

Companies like X-rite (now Calibrite) and Datacolor are 

known for their photographic colour reference targets. One 

of the most known and widely used charts is the 24-patch 

ColorChecker chart. The chart comes in different sizes, 

ranging from the A4-sized ColorChecker Classic (https://

calibrite.com/us/product/colorchecker-classic) to a credit 

card-sized ColorChecker Classic Mini (https://calibrite.

com/us/product/colorchecker-classic-mini). Besides six 

achromatic patches, every ColorChecker target features 

18 patches that should represent everyday colours found 

in foliage, the sky and human skin (see Figure 25). Although 

one could measure the spectral reflectance curves of each 

patch to derive its XYZ values for a particular illuminant, 

XYZ
D50

 or L*a*b*
D50

 values can be found online on sites like 

BabelColor (https://babelcolor.com/colorchecker-2.htm) 

or sometimes on a sheet enclosed with the target (note 

that CIE L*a*b* values can be retrieved via a transformation 

of the XYZ values). Instead of measuring three differently 

coloured parts of an object (like a graffito) every time it 

gets photographed, it is much more convenient to include 

the ColorChecker target in the photo and use the D50 XYZ 

values of its 24 patches to compute the CCM.

Because 24 patches yield 72 values on the RGB and XYZ 

sides (i.e. 24 * 3), the CCM can be calculated more robustly by 

solving these 72 equations. Moreover, the matrix becomes 
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Figure 25. The chart-based versus the spectra-based approach for camera characterisation. In the spectra-based 

approach, AW means Adopted White. For the chart-based approach, the AW is usually D50 or D65.

https://calibrite.com/us/product/colorchecker-classic
https://calibrite.com/us/product/colorchecker-classic
https://calibrite.com/us/product/colorchecker-classic-mini
https://calibrite.com/us/product/colorchecker-classic-mini
https://babelcolor.com/colorchecker-2.htm
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applicable for a broader range of photographic scenes as 

more colours are involved in its computation. For instance, 

imagine a scene with many blue paints and a reference chart 

without a blue patch to build the CCM. In that case, colour 

accuracy might suffer for the blue tones. On the other hand, 

one could extend the number of patches to include typical 

spray paint colours, thus making the CCM more accurate 

for photographing graffiti. These potential positive effects 

of the chart-based approach notwithstanding, a few critical 

observations must be made.

1.	 Too often, the values of such reference targets are 

used irrespective of the photographic illumination 

conditions. Remember that colour values are generated 

by integrating a stimulus over a set of XYZ CMFs, 

and this stimulus is a function of object reflectance 

and illumination. Although the reflectance of the 24 

patches should remain invariant for a couple of years 

when treating the chart appropriately, illumination 

conditions continuously vary. The patches’ published 

XYZ or L*a*b* values are thus only correct for a 

physically not-obtainable D50 illuminant, and they 

become progressively erroneous (i.e. unusable) with 

increasingly different illumination conditions. One 

should ideally compute the patches’ XYZ values using a 

relevant illumination SPD.

2.	 There are different ways to solve the mathematically 

overdetermined system of 72 equations to obtain the 

nine elements of the CCM (Holm, 2006; Molada-Tebar 

et al., 2018; Molada-Tebar, Marqués-Mateu, & Lerma, 

2019a; Molada-Tebar, Riutort-Mayol, et al., 2019; 

Westland et al., 2012). One can use the Normal Equation 

to minimise the sum of the squared differences between 

the sets of XYZ and RGB values:

 

 

(3)

 

 

with T meaning the transpose. Or, one can compute 

a more perceptually relevant solution for CCM with 

an optimisation algorithm that minimises colour 

differences using ∆E
00

 or CIEDE2000, a colour 

difference metric based on the working principles of the 

HVS (CIE, 2018). Although summing the rows of matrix 

CCM should ideally result in the illuminant’s white 

point, that is not the case for the previous solutions. 

That is why Finlayson and Drew (1997) introduced 

a White-Preserving Normal Equation, resulting in 

a neutral CCM in which the sum of all row elements 

equals the illumination’s white point expressed as XYZ. 

In other words: any pixel with the maximum possible 

RGB values [1, 1, 1] in the white-balanced demosaiced 

RAW image will get XYZ coordinates that match those 

of the illuminant’s white point. Figure 16 reflects this by 

indicating that the CCM maps the RAW space reference 

white back to the adopted white.

3.	 Since cameras violate the Luther-Ives condition, there 

is no perfect linear mapping between the camera’s 

raw RGB DNs to XYZ coordinates. Any 3x3 Colour 

Correction Matrix CCM is thus always a compromise, 

thus explaining why some authors call it the Compromise 

Colour Matrix (Kasson, 2015). A CCM might work 

well, but there will always be situations where it 

yields noticeable errors for specific colours. However, 

non-linear corrections are needed to deal with these 

outliers and transform the camera space better. Such 

adjustments are present in camera profiles that can 

be created according to guidelines of the International 

Color Consortium (ICC) or via the DCP (DNG Camera 

Profile) standard that Adobe promulgates (Adobe, 

2021; International Organization for Standardization, 

2010). ICC and DCP camera profiles have the potential 

for excellent colour transformation because they 

contain large lookup tables with colour values to 

interpolate. However, a 3x3 matrix approach keeps the 

data linearity intact, which can be necessary for certain 

subsequent image processing operations. In addition, 

ICC and DCP profiles are larger, more complex and 

thus slower than a CCM. That is why COOLPI does not 

include these table-based profiles, thus rendering them 

also beyond this paper’s scope.

4.	 The choice of target strongly influences the CCM 

(Cao et al., 2008), so it might often be better to 

leverage thousands of reflectance spectra for camera 

characterisation (see the lower part of Figure 25). For 

this approach to work, one needs to know the spectral 

sensitivity curves of the camera. The most reliable 

way to determine them is via RAW photographs of 

a series of narrowband spectra (e.g. from 650 nm to 
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655 nm, 655 nm to 660 nm). Ideally, a monochromator 

generates these small wavebands and steps through 

all wavelengths of interest (Darrodi et al., 2015; Jiang 

et al., 2013; Verhoeven et al., 2009). Although one can 

also apply narrowband interference filters instead of 

a monochromator (Hubel et al., 1994; Mauer, 2009), 

both procedures are time-consuming and necessitate 

expensive laboratory-grade equipment. That is why 

academia also focuses on mathematical spectral 

sensitivity recovery methods that use numerical 

optimisation to estimate the response curves from one 

(or a small set of) RAW photos that record broadband 

spectra (Finlayson et al., 2016; Walowit et al., 2017). 

With the response curves, camera raw RGB values can 

be computed for unlimited stimuli. Any possible SPD 

(even from physically unrealisable illumination) can be 

multiplied with an extensive collection of reflectance 

spectra to generate these stimuli (see Figure 25). 

Since the camera gets characterised via thousands of 

reflectance spectra instead of the ColorChecker’s 24 

artificial ones, the resulting CCM is more accurate and 

robust (although tests by Jim Kasson (2022) revealed 

that the differences might not be as dramatic as is often 

thought). In a way, the spectra-based CCM is no longer 

scene- or chart-dependent but only specific to the 

camera and illumination. Knowing a camera’s spectral 

sensitivity curves also optimises white balancing, as one 

finds optimal channel multipliers upon multiplying the 

illumination SPD with the camera response curves.

6. Musings and Discussion

6.1. What COOLPI Can, Cannot yet, and Will Never Be Able 

to Do

INDIGO photographers first take a picture of a 

ColorChecker Passport Photo 2 target (containing, 

amongst other charts, the 24 ColorChecker patches) 

before photographing each new graffito. After that, they 

measure the graffito’s spectral illumination. Multiplying 

that illumination’s SPD with the known spectral reflectance 

of the ColorChecker patches yields 24 illumination-specific 

XYZ triplets. Combining those with the white-balanced, 

demosaiced pixel values of the ColorChecker RAW photo 

should yield an accurate CCM for the graffito photographs 

acquired directly after the spectrometer measurement. 

In addition, this workflow supports two ways to correctly 

determine the white balance multipliers: indirectly via the 

illumination’s CCT (see 6.2) or directly from one of the 

target’s spectrally neutral grey patches. In the latter case, 

the multipliers typically are extracted from the second, 

third or fourth bottom row grey patch starting from the left 

(see Figure 25).

Instead of a situation-specific CCM, the INDIGO team also 

experiments with workflows that use a fixed D65-based 

CCM, developed under very controlled lighting conditions in 

a colour cabin. Finally, project INDIGO plans to determine 

the spectral sensitivity functions of its cameras because it 

can bring colour accuracy to the next level. However, any 

of these approaches necessitate a specific data processing 

workflow. A dedicated RAW development tool like COOLPI 

is, therefore, essential because it facilitates and automates 

the testing and application of these different colour-

prioritising RAW development workflows (or any better 

variant the team might develop).

By making COOLPI open-source (https://github.com/

GraffitiProjectINDIGO/coolpi) and bundled with lengthy 

documentation, the authors hope that many other heritage 

documentation projects can now pay more attention 

to accurate colour in their digital records. Although 

proprietary RAW developing software can be easy-to-

use, powerful and yield acceptable colour accuracy, their 

processing is done ‘behind closed doors’ and according to 

a rigid scheme. The free Python toolbox COOLPI allows 

for very flexible and explicit, well-documented processing 

pipelines, the latter being a fundamental principle of 

reproducible science.

However, it is crucial to be aware of issues COOLPI currently 

cannot solve or might never be able to. For instance, many 

objects—but certainly spray paints—have an anisotropic 

reflectance, meaning they look different depending on 

the angle of observation or illumination. In order to fully 

describe this angular reflectance behaviour, one needs the 

Bidirectional Reflectance Distribution Function (BRDF) 

of every object (Schaepman-Strub et al., 2006). However, 

it is hard to obtain an object’s BRDF and even harder to 

account for it, so COOLPI cannot deal with BRDF-related 

colour differences or other non-linear imaging factors such 

as specular reflection, glare, and flare.

COOLPI can also not solve the problem of metamerism. 
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Because there are only three types of human cones 

with rather broad spectral sensitivities, stimuli with 

different SPDs can produce identical cone responses, 

thus representing the same colour. Such spectra are called 

metamers. The perceivable colour match is a metameric 

match, and the effect is known as metamerism (Hung, 2006; 

König & Herzog, 1999). Because a camera has three broad 

spectral response curves, it is also a metameric imager 

(Sharma, 2003). However, since the spectral responses of 

the standard observer and a digital camera do not match 

(i.e. cameras do not satisfy the Luther-Ives condition; see 

Section 5.1), these metameric matches differ (Fairchild 

et al., 2001). If the camera sensor generates identical 

raw values for two stimuli a human discriminates, that 

information is permanently lost.

Finally, COOLPI will likely never remove lens-related 

effects like chromatic aberrations or distortion (see Section 

4.6). On the other hand, COOLPI’s following version could 

support image denoising and flat fielding, the latter being 

a procedure to account for sensor dust, nonuniformities in 

the image sensor and optical vignetting (Berry & Burnell, 

2005). Although COOLPI’s current version 0.1.18 does 

not consider the camera’s spectral response curves, they 

should be supported in the RAW image processing as soon 

as project INDIGO has determined them for the cameras. 

Finally, the INDIGO team is also trying to optimise the 

crucial white balancing step and account for uneven 

illumination. Both topics are highly relevant because 

knowledge about the illumination conditions during photo 

acquisition drives many RAW processing steps (see also 

Figure 16). The following two sections will delve slightly 

deeper into these topics.

6.2. The Importance of Illumination Estimation

On a summer day with relatively few clouds, the 

illumination’s CCT can stay relatively stable for several 

hours around noon (see Figure 26). The same can be said for 

the ‘strength’ of the illumination, denoted illuminance and 

expressed in lux. As long as the outdoor illuminance stays 

invariant, camera exposure should not change. However, 

Figure 26 illustrates that after 16:00 (at least in Vienna at 

the end of August), the sun increasingly produces warmer 

light (i.e. the CCT decreases) while the diffuse skylight 

becomes bluer, quantifiable though its CCT increase. A 

decreased illuminance indicates that longer shutter speeds 

or higher ISO values will be needed compared to the 

illumination conditions around noon.
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Figure 26. The evolution of the CCT and the illu-

minance of two outdoor illumination conditions 

during one sunny, almost cloudless summer day 

(30-08-2022) in Vienna, Austria. Measure-

ments were performed every 30 minutes with 

a Sekonic C-7000 SPECTROMASTER portable 

handheld spectrometer. Diffuse skylight read-

ings occurred in an inner courtyard to avoid any 

influence of direct sunlight. The Sun’s low posi-

tion prevented direct sunlight measurements 

after 18:30. The CCT and illuminance graphs 

of the diffuse skylight indicate an outlier mea-

surement at 16:30. Given the relatively stable 

illumination conditions, it is considered a mea-

surement artefact. The lower lux value means 

that the spectrometer’s field of view was like-

ly partly blocked by its operator. A data gap at 

16:30 was avoided by interpolating a new value 

from the 16:15 and 16:45 readings.
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With the illumination’s SPD and CCT measured by the 

spectrometer, there are various possibilities to get the 

correct channel multipliers. One can first compute the 

corresponding (x, y) chromaticity and then the CIE XYZ 

coordinates for the estimated CCT, or directly obtain 

the XYZ values from the SPD. Multiplying these XYZ 

values with the inverse of the CCM (determined without 

white balancing) yields correct multipliers. However, this 

approach relies on the correctness of the CCM. An easier 

and maybe more accurate solution is to rely on the colour 

engineers of the camera manufacturer. Because they know 

the spectral response of their cameras, ideal CCT-specific 

multipliers are computed and stored inside each camera, 

as Figure 28 illustrates for the Nikon Z7ii. One can create 

such a plot by reading the channel multipliers from a series 

of RAW images that had their CCT value incrementally 

changed in the white balance section. Once these multipliers 

are known, they can be treated as a large look-up table. A 

third and optimal approach is to integrate the SPD over the 

spectral sensitivity curves of the camera and normalise the 

result to the green channel. Finally, one can also read the 

raw R, G, and B values of a spectrally neutral object (like a 

white balance card) that shares the same illumination as the 

graffito (as Section 4.2 detailed).

Figure 27. The CCT-specific R and B multipliers stored inside a Nikon Z7ii. Since this camera accepts any custom CCT value 

between 2500 K and 10000 K with a 10 K increment, this graph depicts the 751 channel-specific multipliers. The rate of 

change in these multiplier values slows down after 6500 K. All values were extracted from the RAW images’ Exif metadata 

via Phil Harvey’s free ExifTool (https://exiftool.org). 
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However, imaging a white balance card or measuring 

the illumination SPD with a spectrometer just before 

photographing a graffito might not be all that useful if 

illumination conditions change quickly. Figure 28 graphs 

the evolution of the CCT during 90 seconds while the sun 

is breaking through the clouds. In the first 80 seconds, the 

CCT drops 700 K, after which it stabilises (see Figure 28, 

middle row for the detailed view). If photography were to 

occur during that time, the white balance of the first photos 

would be very different from the last photographs of that 

graffito. One could measure the illumination before and 

after acquiring photographs and interpolate between them 

to end up with photo-specific CCT values. However, if the 

CCT change is not gradual throughout image acquisition 

(for instance, it is stable during a part of the acquisition), 

this method does not work either. Continuously logging 

the illumination is also not practical. Not only would it 

necessitate a spectrometer that can constantly measure 

and log the data, but one must also ensure that the sampled 

illumination conditions are always identical to those of the 

graffito. The only practical solution to deal with illumination 

changes throughout photo acquisition thus seems to be a 

software approach, but COOLPI does not contain anything 

to that end (yet). Or could we rely on the camera to estimate 

the illumination’s CCT?

https://exiftool.org
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The lower row of Figure 28 reveals that the illumination 

estimation by the Nikon Z7ii was very underwhelming. 

The camera photographed the graffito every second 

when the sun broke through the clouds; afterwards, its 

auto-estimated CCT values were retrieved from the 

Exif metadata. Compared to the reliable spectrometer 

measurements, the Nikon is, on average, 1500 K wrong, 

and the CCT trend is not even close to being the opposite 

of the illuminance curve. As the spectrometer data indicate, 

one expects the CCT to drop if the proportion of direct 

solar radiation increases in otherwise cloudy conditions. 

In summary: for photo colours to be accurate, one needs 

to rely on a spectrometer measurement or include a white 

balance card image and hope the illumination’s CCT does 

not change drastically throughout photo acquisition.

Colorimetry, Molada-Tebar & Verhoeven

Figure 28. The evolution of the illumination’s CCT while the sun breaks through the clouds. The upper part is a photo of the 

sky conditions. The middle row (i.e. upper graph) depicts in detail the one-second measurements acquired with a Sekonic 

C-7000 SPECTROMASTER on 05-09-2023 in Vienna (Austria). The spectrometer was mounted on a tripod and pointed in 

the opposite direction of a graffito. The spectrometer also recorded the illuminance (in lux), which steadily increased while 

the sun revealed itself more (see the lower graph). By coincidence, the lux values were in the same range as the CCT numbers, 

which is why both are together on the vertical axis. The CCT estimated by a Nikon Z7ii pointed at the graffito is too low and 

fails to mimic the real CCT trend.
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6.3. One Graffito, Different Illuminations

White balancing can work well if an entire graffito receives 

one type of illumination. However, problems arise if the 

subject contains a shaded portion beside one that receives 

direct solar illumination (see Figure 29). COOLPI can 

currently not deal with such situations, as one would need 

to manually or automatically determine the differently 

illuminated parts and process them separately. However, 

the authors anticipate such functionality, which is why 

the INDIGO photographers have been acquiring dual 

spectrometer readings and ColorChecker Passport Photo 

2 images in such situations since the project’s start. One 

can assume that it is not too hard to deal with different 

illumination conditions like those depicted in Figure 28. 

However, shadows produced by tree branches lack such 

evident divisions between the differently illuminated 

zones. And if those tree branches move in the wind, one can 

assume it becomes tough to consider these photo-specific 

shadow patterns.

Figure 29. Different illumination conditions often apply for a more sizeable graffito. In this case, the graffito is located below 

a bridge which throws part of the creation into the shade.

Colorimetry, Molada-Tebar & Verhoeven

7. Conclusion

Colour can bring much joy to the world and enlighten 

one’s mood. However, colour is also a tricky phenomenon, 

and the science of colour is profoundly mathematical. 

This paper provided an overview of the main concepts 

needed to understand if and how digital photo cameras 

can accurately digitise colour. Hopefully, it has become 

clear that one needs to control and understand every 

step of the RAW photo processing workflow to ensure a 

more or less accurate colour recording of heritage objects. 

To manage that process, the academic graffiti project 

INDIGO has developed the free and open-source Python 

toolbox COOLPI. We hope that COOLPI, and the research 

currently undertaken within the scope of project INDIGO 

to expand this toolbox, will benefit future actions in graffiti 

documentation and extend to other scientific fields where 

recording accurate colour values plays a fundamental role.
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